

Year	Events		
1592	The first instrument to measure temperature – The barothermoscope	Galilei, Italy	
1611	Temperature scale was added (but uncalibrated).	Galen	
1613	Using a thermoscope to record "degrees of heat" of winter snow, summer heat	Sagredo	
1624	"Thermometer" appeared in the literature.	Leurechon	
1654	The first sealed thermometer filled with spirits of alcohol – The Florentian Thermometer that sensing temperature independent of pressure.	Ferdinand II, Italy	ent
1661	The Florentian thermometer was exported to Rome, Paris, England.		e m
1663	Attempted to calibrate and standardize thermometers - using ice point.	Hooke	
1694	Suggested ice point and boiling point as two fixed points and scale 12.	Renaldini, Italy	63
1701	Defined two fixed points: ice point and armpit temperature (labeled as also 12).	Newton, British	8
1 70 8	Modified Romer (a Danish astronomer) scale to a Fahrenheit scale, substitute mercury for spirits, used a mixture of sea salt, ice, and water to produce the zero point. Ice point = 32, boiling point = 212.	Fahrenheit, Netherland	Contact
1742	Invented a scale with 0 at the steam point and 100 at the ice point.	Celsius, Sweden	Ĭ
1743	Inverted Celsius scale and named "centigrade" to indicate a scale divided into 100 parts.	Christin, France	
1821	Discover the existence of thermoelectric current	Seeback, Estonia	
1848	Define a thermodynamic (absolute) temperature scale with ideal gas (H2).	Kelvin, British	

1. The de	area of botno				
		ss or coldnes	s of a bod	V.	
2 All had	ios havo tho s	amo tompor	nturo if tho	, v ara in tharmal aquilit	rium
2. Ali buu	ies nave life s	ame tempera		y are in mernai equilit	mum.
The lev	el of thermal	energy. (cf. E	lectrical e	nergy; Mechanical pote	ential energy.)
			0		01)
	of temperatu	ire (one of	System	International units,	, SI) :
	Ur	nit	Symbol	Quantity measured	
		1. Meter	m	Length	
		2. Kilogram	kg	Mass	
		3 Second	s		
		0.0000114	0	lime	
	of temperatu Un Dimensional	4. Ampere	A	Electric current	
	Dimensional	ermal energy. (cf. E erature (one of Unit 1. Meter 2. Kilogram 3. Second 4. Ampere 5. Kelvin 6. Mole 7. Candela	A K	Electric current	
	Dimensional	4. Ampere 5. Kelvin 6. Mole	A K mol	Electric current Temperature Amount of substance	
	Dimensional	4. Ampere 5. Kelvin 6. Mole 7. Candela	A K mol cd	Electric current Temperature Amount of substance Luminous intensity	
	Dimensional	4. Ampere 5. Kelvin 6. Mole 7. Candela 8. Radian	A K mol cd rad	Time Electric current Temperature Amount of substance Luminous intensity Plane angle	

				Pri	nciple			
Sensor	Thermo- electric	Electrical Resistance	Carrier Mobility	Thermal Radiation	Electrical Capacitance	Thermal Expansion	Resonant Frequency	Other
Thermocouple								
Thermopile								
RTD(PTC, NTC)								
Thermistor								
P-N junction								
Optical pyrometer								
Pyro-electric								
Quantum								
Spectroradiometer								
Cooling IR imager								
Uncooled IR imager								
Gas								
Liquid								
Bi-metal								
Quartz								
Liquid Crystal								1
Others								2,3,4,5

Transducer or probe	Temperature sensitive parameter	Contact method	Remarks
Resistor	Electrical resistance or voltage at constant current	Direct contact	Usually calibrated against a ther- mocouple. However Pt RTDs are one of the most accurate temperature sensors available.
Thermocouple	Open circuit voltage	Direct contact	Useful as a "point"sensor.
Diode or transistor	Voltage, usually with constant forward bias	Direct contact	Usually employed to measure an active device or IC temperature
Infrared or radiation	Detector voltage	Line-of-site or optical contact	Can yield either a point temp- erature or a thermal map or image. Not strictly quantitative unless sample emittance is known at the image points.
Fluorescent detector	Detector voltage	Direct contact (proximity)	Approximate point detector, contact resistance a problem.
Liquid crystal	Color	Direct contact	Yields a temperature map, semiquantitative unless a detailed calibration is performed to quantify color vs. temperature relation.

Temperature Scales □ Requirements for establishing a temperature scale: 1. Set the fixed points and given the temperature value. 2. Choosing an appropriate instrument to interpolate scale. 3. Determine the relationship between the measurement variable and the temperature. □ The International Practical Temperature Scale: The International Committee of Weights and Measures(1927,.. 1960,.. 1968,.. 1990) Fixed points: 6(ITS-27), 13(IPTS-68), 17(ITS-90) Defining fixed points of the ITS-27 °C Number ٥C Substance State Range ٥C Interpolating Instrument -182.97 0, Boiling Point -182.97 ~ 0 Platinum resistance Т 0.000 H₂O Freezing Point 2 ш 0 ~ 660 Platinum resistance 100.000 H₂O **Boiling Point** 3 Ш 660 ~ 1063.0 S-type thermocouple 4 444.60 s **Boiling Point** IV >1063.0 Optical pyrometer 960.5 Freezing Point 5 Ag 6 1063.0 Au Freezing Point (from Lee (2001)) Modern Measuring Techniques of National Taiwan University By An-Bang Wang **Thermo-fluids Mechanics** Institute of Applied Mechanics

ITS-90(1) □ The International Temperature Scale of 1990 (ITS-90) Refl:http: 1. Units of Temperature The unit of the fundamental physical quantity known as thermodynamic temperature, symbol T, is the kelvin symbol K, defined as the fraction 1/273.16 of the thermodynamic temperature of the triple point of water. Because of the way earlier temperature scales were defined, it remains common practice to express a temperature in terms of its difference from 273.15 K, the ice point. A thermodynamic temperature, T, expressed in this way is known as a Celsius temperature, symbol t, defined by: t/°C = T/K - 273.15 The unit of Celsius temperature is the degree Celsius, symbol °C, which is by definition equal in magnitude to the kelvin. A difference of temperature may be expressed in kelvins or degrees Celsius. The International Temperature Scale of 1990 (ITS-90) defines both International Kelvin Temperatures, symbol T90, and International Celsius Temperatures, symbol t90. The relation between T90 and t90 is the same as that between T and t, i.e.: $t_{on} / C = T_{on} / K - 273.15$ The unit of the physical quantity T90 is the kelvin, symbol K, and the unit of the physical quantity T90 is the degree Celsius, symbol °C, as is the case for the thermodynamic temperature T and the Celsius temperature t. (from Lee (2001)) Modern Measuring Techniques of National Taiwan University By An-Bang Wang **Thermo-fluids Mechanics** Institute of Applied Mechanics

ITS-90(2)	
2. Principles of the International Temperature Scale of 1990 (IT	S-90)
The ITS-90 extends upwards from 0.65 K to the highest temperature prac Planck radiation law using monochromatic radiation. The ITS-90 comprise throughout each of which temperatures T90 are defined. Several of these rang such overlapping occurs, differing definitions of T90 exist: these differing defini	ticably measurable in terms of the es a number of ranges and sub-ranges ges or sub-ranges overlap, and where tions have equal status.
3. Definition of the International Temperature Scale of 1990	
Between 0.65 K and 5.0 K T90 is defined in terms of the vapour-pressure terms	mperature relations 3He and 4He.
Between 3.0 K and the triple point of neon (24.5561 K) T90 is defined by mear calibrated at three experimentally realizable temperatures having assigned nur and using specified interpolation procedures.	ns of a helium gas thermometer merical values (defining fixed points)
Between the triple point of equilibrium hydrogen (13.8033 K) and the freezing j defined by means of platinum resistance thermometers calibrated at specifi using specified interpolation procedures.	point of silver (961.78 $^\circ\mathbb{C}$) T90 is ied sets of defining fixed points and
Above the freezing point of silver (961.78 $^\circ \rm C$) T90 is defined in terms of a defini radiation law.	ing fixed point and the Planck
	(from Lee (2001
Modern Measuring Techniques of Thermo-fluids Mechanics By An-Bang Wang	National Taiwan Universi Institute of Applied Mechani

	Ter	nperature		
Number	T ₉₀ /K	t ₉₀ /ºC	Substance	State
1	3 to 5	-270.15 to -268.15	He	V
2	13.8033	-259.3467	e-H ₂	Т
3	~17	~-256.15	e-H ₂ (or He)	V (or G
4	~20.3	~-252.85	e-H ₂ (or He)	V (or C
5	24.5561	-248.5939	Ne	Т
6	54.3584	-218.7916	O ₂	Т
7	83.8058	-189.3442	Ar	Т
8	234.3156	-38.8344	Hg	Т
9	273.16	0.01	H ₂ O	Т
10	302.9146	29.7646	Ga	M
11	429.7485	156.5985	In	F
12	505.078	231.928	Sn	F
13	692.677	419.527	Zn	F
14	933.473	660.323	AI	F
15	1234.93	961.78	Ag	F
16	1337.33	1064.18	Au	F
17	1357.77	1084.62	Cu	F

