

About "Preventing Ice Adhesion to Metal"

The successful technology will:

- Demonstrate anti-adhesion and easy release of ice from metal surfaces, in the presence of air flow (surface area 4 in²)
- Metal surfaces including but not limited to: aluminum, stainless steel, titanium, and nickel
- · Allow application on complex three-dimensional shapes
- Maintain anti-ice adhesion characteristics after exposure to particulates and water struck at high velocities
- Maintain properties at extreme low temperatures, -50 $^\circ F,$ with exposure to occasional temperatures of 200 $^\circ F$
- Not be susceptible to cracking or aging or degradation by exposure to UV light
- Long maintain performance (minimum 10-20 year time period)
- Preferably be effective at minimum cost and weight

APPROACHES NOT OF INTEREST: Use of hot fluid to prevent ice buildup

Modern Measuring Techniques of Thermo-fluids Mechanics

By An-Bang Wang

National Taiwan University Institute of Applied Mechanics

Parameter	Pefinition	Qualitative ratio of effects	Importance	
Reynolds number	$Re = \frac{\rho UL}{\mu}$	Inertia Viscosity	Always	
Mach number	$Ma = \frac{U}{a}$	Flow speed Sound speed	Compressible flow	
Froude number	$Fr = \frac{U^2}{gL}$	Inertia Gravity	Free-surface flow	
Weber number	$We = \frac{\rho U^2 L}{\Upsilon}$	Inertia Surface tension	Free-surface flow	
Cavitation number (Euler number)	$Ca = \frac{p - p_v}{\rho U^2}$	Pressure Inertia	Cavitation	
Prandtl number	$\Pr = \frac{\mu c_p}{k}$	Dissipation Conduction	Heat convection	
Eckert number	$Ec = \frac{U^2}{c_p T_0}$	Kinetic energy Enthalpy	Dissipation	
Specific-heat ratio	$\gamma = \frac{c_p}{c_v}$	Enthalpy Internal energy	Compressible flow	Whi

Dimensionless Groups in Fluid Mechanics (II)

Parameter	Pefinition	Qualitative ratio of effects	Importance
Strouhal number	$St = \frac{\omega L}{U}$	Oscillation Mean speed	Oscillating flow
Roughness ratio	$\frac{\epsilon}{L}$	Wall roughness Body length	Turbulent, rough walls
Grashof number	$Gr = \frac{\beta \Delta T g L^3 \rho^2}{\mu^2}$	Buoyancy Viscosity	Natural convection
Temperature ratio	$\frac{T_w}{T_o}$	Wall temperature Stream temperature	Heat transfer
Pressure coefficient	$C_p = \frac{p - p_{\infty}}{\frac{1}{2}\rho U^2}$	Static pressure Dynamic pressure	Aerodynamics, hydrodynamics
Lift coefficient	$C_L = \frac{L}{\frac{1}{2}\rho U^2 A}$	Lift force Dynamic force	Aerodynamics, hydrodynamics
Drag coefficient	$C_D = \frac{D}{\frac{1}{2}\rho U^2 A}$	Drag force Dynamic force	Aerodynamics, hydrodynamics
n Measuring Techniques ermo-fluids Mechanics	of By An	Bang Wang	National Taiwan Univers

Modelling and Similarity					
$\Pi_1 = F(\Pi_2, \Pi_3, \dots, \Pi_k)$					
model	$\Pi_{2m} = \Pi_{2p}$	prototype			
	$\Pi_{3m} = \Pi_{3p}$				
	$\Pi_{km} = \Pi_{kp}$				
	$\Rightarrow \Pi_{1m} = \Pi_{1p}$	⇒ Complete Similarity			
But in engineering,	But in engineering, instead of complete similarity, We consider:				
G	Geometric similarity (L-scale)				
Kinematic similarity (L- & t-scale)					
Dyna	amic similarity (L- &	t- & m-scale)			
(Thermal similarity)					
Modern Measuring Techniques of Thermo-fluids Mechanics	By An-Bang Wang	National Taiwan University Institute of Applied Mechanics			

R	eferenci	es (II)			
Doebelin, E.O., Measurement Systems, application and design, 4th Ed., McGraw-Hill book company, 1990.					
Hinze, J.O., Turbulence, second edition, McGraw-Hill Book company, 1975.					
• Bradshaw, P., An Introduction to Turbulence and its Measurement, Pergamon Press, Oxford, 1971.					
Schlichting, H., Boundary layer Theory, 7th edition, McGraw Hill Book Co., New York, 1979					
Bendat, J.S., and Piersol, A. G., Random data: Analysis and Measuremen Procedures, John Wiley & Sons, Inc, New York, 1971					
 王安邦等十六人合輯, 雷射熱流量測基礎訓練課程講義, NTU-IAM, Taipei, June 30 - July 11, 1997 					
Conference Proceedings and Journal Papers					
 Proceedings of Applications of Laser Techniques to Fluid Mechanics, Proceeding of the International Symposium on Flow visualization,) 					
Modern Measuring Techniques of Thermo-fluids Mechanics	By An-Bang Wang	National Taiwan University Institute of Applied Mechanics			