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p. 487 

 Deflections are calculated in order to verify 
that they are within tolerable limits 

 The deflection of a beam depends on the 
stiffness of the material and dimensions of 
beam as well as on the applied loads and 
supports 

8-1 Introduction 

By Rick Wester 

 

8-2 The Differential Equation 
       of the Elastic Curve 

p. 487 

 Straight (horizontal) 

beam 

 Elastic 

 Deflection (vertical 

displacement) v 

 

 v: positive upward 
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8-2 The Differential Equation 
       of the Elastic Curve 

p. 487 

 Elastic curve 

 Slope of the curve: 
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tan slope, smallfor 
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 Curvature of the curve: 
2 2

 3 2
2

1

1 ( )

d v dx

dv dx

  

8-2 The Differential Equation 
       of the Elastic Curve 

p. 488 

 For the small slope,  

 Recall Eqs.(7-3) and (7-8) 
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Differential equation for the elastic curve 
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8-2 The Differential Equation  
      of the Elastic Curve 

 

Or alternatively, 

Curvature for M = M(x) (I) 
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 For most beams, dy/dx << 1. 
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Differential equation for the elastic curve 
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Sign Convention 

p. 488 

dx

dv

dx

dv

negative positive 

 deflection   

 slope  

 moment   

 Shear 

 load 

Relation of Physical Quantities and y 

p. 488 
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8-3 Deflection by Integration 

p. 489 
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integration 

+ boundary conditions 

y 

 y = 0 

d2y/dx2 = 0 

 y = 0 

dy/dx = 0 

Example Problem 8-2 (I) 

p. 492 
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Example Problem 8-2 (II) 

p. 492 
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Example Problem 8-2 (III) 

p. 492 
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B.C. at A:   x = 0, y = 0. 02 C

x = L,  y = 0. 
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Example Problem 8-2 (IV) 

 Maximum deflection between supports 

p. 492 
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Maximum deflection (between supports) occurs at x = 0.541L 
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Remarks 

p. 493 

 If the deflection of beam to the left of support A is 

also required 

 Derive M(x) (or V(x), w(x)) for that portion 

 Integrate the differential equation. 

 Apply the matching condition at support A: 

 y(A) = y(A+) ,        y’(A) = y’(A+) 
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4  Exercises 

 8-27,  8-30,  8-35,  8-44 


