Mechanics of Materials

(http://bernoulli.iam.ntu.edu.tw/)

By Prof. Dr.-Ing. An-Bang Wang (王安邦)

Chapter 1

INTRODUCTION AND REVIEW OF STATICS*

(* Statics is concerned with bodies that are acted on by balanced forces)

Preface (I)

- 課程要求: 以課堂講解為主,有習題作業、平時表現、期中考與期末考。 考試作弊<u>該次考試不計分,且一律送學校處理</u>。
- 作業要求:1.作業指定後再隔週上課前繳交至講桌上,作業遲交扣分。2.作業若有抄襲情事,被抄與抄襲者該次作業不計分。
- 先修科目:普通物理學甲上
- **Grading Policy: Homework 15%, Mid-term exam** 25+25%, Final exam 25%, Quizzes 10% + Q&A 5%
- Office Hours: 每週五 10:00~11:00 @ R405 (IAM)
- Textbook: W. F. Riley, L. D. Sturges, and D. H. Morris, Mechanics of Materials, 6th Ed., John Wiley & Sons, 2007

 Reference: J. M. Gere (and S. T. Timoshenko), Mechanics of Materials, 6th Ed., Thomson Brooks/Cole, 2004.
- 授課老師: 王安邦(應力館405室), 02-33665651, e-mail: abwang@spring.iam.ntu.edu.tw
- 助 教:李孟憲(工綜館420室), 電話:33663061,行動電話:0911693763, e-mail:r02524005@ntu.edu.tw

Preface (II)

- 課程概述:本課程介紹材料力學的基本概念與分析方法,以瞭解基本 構件受力後的應力與應變狀況。
- 課程目標:課程結束時,修課同學應具備以下能力:
 - 1.了解<u>應力</u>的定義,能推導不同方向應力的轉換公式,並能計算主應力 及最大剪應力。
 - 2.能以位移、變形及<u>應變</u>來描述物體形狀的變化,了解應變在不同方向 的轉換公式,並能計算主應變及最大剪應變。
 - 3.了解材料之材料特性及其應力-應變關係。
 - 4.了解材料強度及安全係數的觀念。
 - 5.能分析桿件受軸向荷重的應力及變形。
 - 6.能分析壓力容器的應力分佈。
 - 7.了解應力集中現象。
 - 8.能分析桿件兩端受扭力作用的應力及變形。
 - 9.能分析梁受彎矩或側向力作用的應力及變形。

課程大綱 & Schedule of Teaching Plan

- 1. Introduction and Review of Statics 9/16, 9/19, 9/23
- 2. Analysis of Stress: Concepts and Definitions 9/23, 9/26, 9/30,10/03, 10/7
- 3. Analysis of Strain: Concepts and Definitions 10/07,10/14, 10/17,
- 4. Material Properties and Stress-Strain Relationships 10/17, (10/21), 10/24, 10/28, 10/31
- 5. Axial Loading Applications and Pressure Vessels 11/04, 11/07, 11/11, 11/14, 11/18, 11/21
- 6. Torsional Loading of Shafts 11/25, 11/28, (12/02), 12/05, 12/09,
- 7. Flexural Loading: Stresses in Beams 12/09, 12/12, 12/16, 12/19, 12/23,
- 8. Flexural Loading: Beam Deflections 12/26, 12/30, 01/02
- Expected 1st Midterm exam: 2014/10/21
- Expected 2nd Midterm exam:2014/12/02
- Final exam: 2015/01/13

1-1 Introduction

Objective

Development of relationships between the loads applied to a *nonrigid* body and the internal forces and deformations induced in the body.

1-2 Classification of Forces

■ contact ~ noncontact

(surface) (weight)

- concentrated ~ distributed ?
- external ~ internal (see 1-5 in detail)
- applied ~ reactions ?
- static ~ dynamic (impact, cyclic...)

1-3 Equilibrium of a Rigid Body (I)

Rigid body: a body that does not deform under the action of applied loads

$$\begin{cases} \sum \mathbf{F} = \mathbf{0} \\ \sum \mathbf{M}_{\alpha} = \end{cases}$$

$$\begin{cases} \sum F_x = 0 & \sum F_y = 0 \\ \sum M_x = 0 & \sum M_y = 0 \end{cases} \qquad \sum M_z = 0$$

1-3 Equilibrium of a Rigid Body (II)

Free-body diagram (FBD):

A (carefully prepared) drawing or sketch that shows a "body of interest" separated from all interacting bodies.

A review of Mechanics

Mechanics of rigid body

Statics

Dynamics
kinematics kinetics

Mechanics of deformable body:

Mechanics of Materials

Elasticity

Plasticity

Rheology

Mechanics of fluid (continuous deforming)

(review)

A review of Mechanics: Forces

- A *force* is described by its magnitude, direction, and point of application. Force is a **vector** quantity.
- Effects of a force on a body:
 - external effect: change body motion (dynamic), or develop reactions on the body (static).
 - internal effect: deform the body → stress/strain (mechanics of materials).

A review of Mechanics: 2-D Reactions at Supports

and Connections (Table 6-1 & 6-2 in Statics, Riley & Sturges)

2. Flexible cord, rope, chain, or cable

3. Rigid link

4. Ball, roller, or rocker

(review) Link bar: two-force member

A review of Mechanics: 2-D Reactions at

Supports and Connections

12. Ideal pulley

(review)

A review of Mechanics: 3-D Reactions at

Supports and Connections

2. Hinge

3. Ball bearing

(review)

A review of Mechanics: 3-D Reactions at Supports and Connections 5. Thrust bearing 6. Smooth pin bracket 7. Fixed support

(review)

Which one is correct?

- 1. T = 5000 lb
- 2. T = 7071 lb
- 3. T = 0 lb
- \blacksquare 4. T = 2500 lb
- 5. 以上皆非

Free-body diagram

Example Problem 1-2

(a) Neglect beam weight

$$\sum M_{\perp} = 0 \implies B$$

$$\sum F_x = 0$$
 \Longrightarrow A_x

$$\sum M_{A} = 0 \qquad \Longrightarrow \qquad B$$

$$\sum F_{x} = 0 \qquad \Longrightarrow \qquad A_{x}$$

$$\sum F_{y} = 0 \qquad \Longrightarrow \qquad A_{y}$$

Example Problem 1-2

Beam mass = 8.5 kg/m**Determine reactions A=? & B=?** (b) Include beam weight

$$\sum M_A = 0$$
 \Longrightarrow B

$$\sum F_x = 0$$
 \Longrightarrow A_x

$$\sum F_x = 0 \qquad \Longrightarrow \qquad A_x$$

$$\sum F_y = 0 \qquad \Longrightarrow \qquad A_y$$

Example Problem 1-3

(consider one side)

Car = 3400 lb**Determine forces in members** BD=? DE=? & CE=?

$$\sum M_A = 0$$
 \Longrightarrow E

$$\sum F_x = 0$$
 \Longrightarrow A_x

$$\sum F_{x} = 0 \qquad \Longrightarrow \qquad A_{y}$$

$$\sum F_{y} = 0 \qquad \Longrightarrow \qquad A_{y}$$

Example Problem 1-3 (continued)

Method of joints

$$\left\{ \begin{array}{l} \sum F_x = 0 \\ \sum F_y = 0 \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} T_{CE} \\ T_{DE} \end{array} \right.$$

Example Problem 1-3 (continued)

Method of Sections

$$\sum M_C = 0$$
 \Longrightarrow T_{BD}

1-4 Equilibrium of a Deformable Body

■ Example Problem 1-8

Assumptions:

bar AB rigid

wire BC deformable

pins frictionless

$$T_{BC} = k\delta$$
, k = 2500 lb/in

$$\delta = L_f - L_i$$

Determine tension in wire=?

Example Problem 1-5

3 equil. eqs 4 unknowns

$$\sum M_A = 0$$

$$\sum F_x = 0$$

$$\sum F_{y} = 0$$

+
$$T_{BC} = k\delta$$
 force-deformation

Influence of Wire Elongation

	rigid wire	k = 5000 lb/in	k = 2500 lb/in	k = 2000 lb/in
Т	7071 lb	7221 lb	7379 lb	7893 lb
θ	O°	2.465°	5.097°	14.246°

Solution of Defomable Body Problems

- Equations of equilibrium
- Force-deformation relationship
- Geometry of deformation

1-5 Internal Forces

Resultant Force and Couple

$$\mathbf{R} \Rightarrow P, \ V_y, \ V_z$$

P: normal force

 V_y , V_z : shear forces

$$\mathbf{C} \Rightarrow T, M_y, M_z$$

T: twisting moment or torque

 M_y , M_z : bending moments

Example Problem 1-9

$$\sum F_x = 0 \qquad \sum M_x = 0$$

$$\sum F_{x} = 0 \qquad \sum M_{x} = 0$$

$$\sum F_{y} = 0 \qquad \sum M_{y} = 0 \qquad \Longrightarrow \qquad P, V_{y}, V_{z}$$

$$\sum F_{z} = 0 \qquad \sum M_{z} = 0$$

$$T, M_{y}, M_{z}$$

$$\sum F_z = 0 \qquad \sum M_z = 0$$

$$P$$
, V_y , V_z

$$T$$
, M_y , M_z

Example Problem 1-10

Determine (a) support reaction? (b) internal force at x=4m?

$$\sum M_A = 0 \implies M_A = ?$$

$$\sum F_x = 0 \implies A_x = ?$$

$$\sum F_y = 0 \implies A_y = ?$$

$$\sum F_x = 0$$
 \Longrightarrow $A_x = ?$

$$\sum F_{y} = 0 \implies A_{y} = ?$$

Which one is correct?

- 1 $M_A = 50 \text{ kN.m } A_x = 0 \text{ kN}$, $A_y = 15 \text{ kN}$
- 2 $M_A = 45 \text{ kN.m } A_x = 5 \text{kN}$, $A_y = 15 \text{ kN}$
- 3 $M_A = 40 \text{ kN.m } A_x = 0 \text{ kN}$, $A_y = 15 \text{ kN}$
- 4 $M_A = 40 \text{ kN.m } A_x = 5 \text{ kN}$, $A_y = 15 \text{ kN}$
- 5. No correct answer

Example Problem 1-10

6 Exercises

1-9, 1-17, 1-25, 1-67, 1-77, 1-83

Concentrated Load ~ Distributed Load

concentrated

distributed

Types of Loads

