

Introduction to Lab-On-a-Chip:

實驗室晶片導論

授課者:王安邦、丁照棣、林泰元、范士岡、張世宗、 楊鏡堂、潘建源、盧彥文(#此期辦列)

國立臺灣大學 應用力學研究所 Institute of Applied Mechanics, National Taiwan University

實驗室晶片導論

Edited By An-Bang Wang

- NTU-IAM

精微熱流控制實驗室

Co-Lecturers

- ◆張世宗,生化科技學系
- ◆楊鏡堂,臺灣大學機械研究所
- ◆丁照棣,臺灣大學動物學研究所
- ◆盧彥文,國立臺灣大學生物產業機電工程系
- ◆范士岡,臺灣大學機械研究所
- ◆林泰元,臺灣大學醫學院藥理學科暨研究所
- ◆潘建源,動物學研究所

- NTU-IAM -

實驗室晶片導論

Edited By An-Bang Wang

Course Organization (I)

Related courses @ NTU-IAM:
543 M6950 實驗室晶片導論 (Introduction to Microfludics in Lab-On-a-Chip) 3 credits

543M6830 現代熱流量測技術 (*Modern Measuring Techniques of Thermal Fluid Mechanics*) 3 credits

- Language: Chinese; lecture notes in English
- Lecture Notes on Web: (http://bernoulli.iam.ntu.edu.tw/tw/index.htm)
- Grading Policy: Term project report 80% and final 20%, Q&A 10%

實驗室晶片導論 Edited By An-Bang Wang

NTU-IAM

精微熱流控制實驗室

Course Organization (II)

- NTU-IAM -

實驗室晶片導論

Edited By An-Bang Wang

The Trend of Industry

The trend of industry development depends on the trend of human needs.

- Providing Ubiquitous Total solution
- Integration of functionality
- Built in precision/inspection/automation
- Reduce time to certification/mass production/market/profit

(程一麟)

NTU-IAM 精微熱流控制實驗室

實驗室晶片導論1

Edited By An-Bang Wang

Preface (II)

[Charles Darwin]

It is not the *strongest* of the species that survives, nor the most intelligent that survives.

It is the one that is the most adaptable to change.

· NTU-IAM

實驗室晶片導論

Preface (III)

- ◆態度決定高度
 - ✓ 科技本乎人性
 - ✓團隊優於個人
 - ✓細節決定品質
 - ✓毅力決定成敗

NTU-IAM

實驗室晶片導論

Edited By An-Bang Wang

精微熱流控制實驗室

Course Contents

- ◆ Introduction to LOC & term project assignment (2/19)
- Specificity of enzyme catalytic mechanism & Antibody technology (2/26,3/05)
- Micromixers, microreactors, Droplet-based biomicrofluidics and Lab-on-a-chip (3/12, 3/19)
- ◆ Behavior Genetics: What we have learned from *Drosophila*. (3/26,4/02)
- ◆ Mid-term report of Selected topic (4/09)
- Cantilever-sensor for biosensing & bead-based microfluidics (4/16,4/23)
- ◆ Electro-Microfluidics (4/30,5/07)
- ◆ Stem cell and translational medicine (5/14,5/21)
- ◆ Bioenergetics & Plasma membrane (5/28,6/04)
- ◆ Final report of Selected topic (6/21)

NTU-IAM

實驗室晶片導論

Edited By An-Bang Wang

What are LOAC & μ-fluidics?

- ♦ There are different names used in the literature: μ-fluidic, MEMS-fluidics, μ-TAS, BioMEMS, biochip, LOAC, nanofluidics, nanoflows... etc.
- μ-fluidic is the study of flows, which are circulating in artificial μ-systems. (Patrick Tabeling)
- ♠ μ-TAS: Micro Total Analysis Systems
- **◆***LOAC* (*or LOC*): combining different operations, which are originally performed in laboratories, in a single microdevice. (Berthier & Silberzan)

實驗室晶片導論1

Edited By An-Bang Wang

特為教法抗生事論会

What are Fluids?

- Fluid is a substance tending to flow or conform to the outline of its container (Merriam-Webster's Collegiate Dictionary, Static aspect) Fluids are the substance that **could not resist deformation**, move and deform continuously under the application of a shear (tangential) stress, no matter how small the shear stress may be. (F. White, Dynamic aspect)
- Fluids include
 - > Liquid: a state of matter in which the molecules are relatively free to change the positions w.r.t. each other but restricted by cohesive forces so as to maintain a relatively fixed volume.
 - > Gas: a state of matter in which the molecules are practically unrestricted of cohesive forces and has neither definite shape nor volume.
- Some systems contain complex phenomena, like a group of solid that shows the ability to flow and polymers resist deformation etc.

sand as a liquid

Polymers as frozen liquid — NTU-IAM — 精微熱流控制實驗室

www.chemistrv.helsinki.fi

實驗室晶片導論1

Edited By An-Bang Wang

Topics of Term projects

- ◆ Integrative Microfluidic Chip for DNA Recombination DNA重組晶片(2008, 2009, 2010, 2011_上, 2011_上, 2012_上, 2013_上)
- ◆ **POCTC for CKD** (Point of Care Test Chip for Chronic Kidney Disease) 腎臟病篩選晶片(2009, 2010, 2011_下, 2012_上, 2013_上)
- ◆ Fly Automatic Sorting and Identification Chip 果蠅自動篩選辨識晶片(2012上, 2013上)
- ◆ High throughput Stem Cell Incubation & Test Chip 幹細胞高效培養與測試晶片(2011_下, 2012_上, 2013_上)
- ◆ Two-dimensional Electrophoresis Chip 二次元電泳晶片(2009, 2010, 2011 ⊢, 2011 ¬)
- ◆ C²MC (Cell Counter & Measurement Chip) 細胞計數及量測晶片(2010, 2011_下, 2012_ト)
- ◆ Neuron Development & Test platform on Chip 神經細胞發展測試平台晶片(2011_下)

實驗室晶片導論

Edited By An-Bang Wang

Results of 2008 - 2012 Projects

- ◆ 1 US & 2 Taiwan Patent pending
- ◆ "DNA 重組流程晶片化之研究, "Proceedings of 2008年生物醫學工程科技研討會(獲學生口頭論文競賽特優獎)。
- ◆ "應用機器視覺影像辨識於DNA 重組流程晶片",2008年第七屆虛擬儀控研討會,(獲美商國家儀器學術組佳作獎)。
- ◆ "Automatic Total Processing of DNA Recombination Chip" 17th Symposium on Recent Advanced in Cellular and Molecular Biology, Taiwan, 2009
- ◆ 1 SCI-Journal paper has been published in "*Electrophoresis*" in 2011 (Impact Factor: 3.077)
- ◆ "毛細-重力閥門在整合式尿液肌酸酐檢測晶片之研究與應用",2011年生物醫學工程科技研討會.(學生口頭論文競賽特優獎)。

♦ ...

實驗室晶片導論

Edited By An-Bang Wang

- NTU-IAM

Comparisons of in-lab and on-chip DNA recombination process

	In-lab	On-chip
Time consuming	3-24 h	<1 h
Manual checkpoints during operation	Many	0
Gel cut	Necessary	Unnecessary
Operator exposure to UV	\sim 1 min/sample	0
Gel extraction kit	Necessary	Unnecessary
Minimum DNA sample needed	3–5 µg	0.5–1 μg
Parallel operation	Possible with more manpower	Possible with full automation
Large DNA fragment separation and selection	Difficult	Possible (success at least for DNA up to 4–5kb)

實驗室晶片導論

Edited By An-Bang Wang

NTU-IAM 赤流中亦生[宇宙

精微熱流控制實驗室

References

- ◆ Lab-on-a-Chip, Miniaturized System for (Bio) Chemical Analysis and Synthesis, E. Oosterbroek and A. Van den Berg (Editor), Elsevier, 2003.
- ◆ Introduction to microfluidics, Patrick Tabeling, Oxford University Press, 2005
- ♦ Fundamentals and applications of microfluidics, Nam-Trung Nguyen, Steven T. Wereley, Artech House, 2006
- Microfluidics for biotechnology, Jean Berthier, Pascal Silberzan, Artech House, 2006
- ♦ Microfludic, J. Ducree and R. Zengerle, Classnote of IMETK, Albert-Ludwigs-Universityt Freiburg, Germany.
- ◆ Process Engineering in Biotechnology, A.T. Jackson, Prentice-Hall Inc., 1991
- ♦ Journal, conference papers, seminars and information from Webs.

NTU-IAM

實驗室晶片導論

Edited By An-Bang Wang