Bio-optoelectronic Measurements 光電生醫量測技術

Velocity & Particle size Measurement

王安邦 Prof. Dr.-Ing An-Bang Wang Institute of Applied Mechanics National Taiwan University TEL: 886-2-3366-5067 E-mail: abwang@spring.iam.ntu.edu.tw

Bio-optoelectronic Measurements

Velocity & Particle size Measurement

Contents

- Pressure-based probes & Hot-wire anemometry
- Laser Doppler anemometry
- Particle image velocimetry
- Aerosol generation
- Particle size measurement

Ultrasound Flow measurement

(From Y.H. Shau)

Bio-optoelectronic Measurements

By An-Bang Wang

经 光機電工程教學資源中心 Opto-Mechatronics Education Resources Center

Velocity measurements in daily Life

Bio-optoelectronic Measurements

Traditional velocity Measurements

- (flow rate ⇒) Average velocity
 Q = U A
- Local velocity measurement:
 - mechanical rotation*(\$)

(* regular calibration needed)

- Pitot-static tube (\$\$)
- Hot-wire/-film*(\$\$\$)

$$\frac{p_0}{\rho_0} = \frac{p}{\rho} + \frac{V^2}{2}$$

Bio-optoelectronic Measurements

Dynamic pressure measurement

Measurements

Thermal Anemometer

Hot wire and hot film are most commonly used sensor of thermal anemometers.

- **OAdvantages:**
 - convenient usage
 - fast response
- ●Disadvantages of thermal anemometer:
 - intrusive
 - calibration-required
 - fragile
 - blind to direction
 - thermo-sensitive
 - regular cleaning needed

Bio-optoelectronic Measurements

By An-Bang Wang

经 光機電工程教學資源中心 Opto-Mechatronics Education Resources Center

Principle of thermal anemometers (I)

- Thermal anemometer is an indirect measuring technique (not the velocity but the heat loss from a thin, heated wire is measured and related to the flow velocity.)
- The heat loss of a hot wire (or hot film) is dependent on a number of factors:
 - relative velocity between sensor and fluid medium. (magnitude and direction)
 - temperature difference between sensor and medium.
 - material properties of sensor and medium.(e.g. thermal conductivity, film coefficient,...etc.)
 - dimensions of the sensor.
- If the last three factors are kept constant, a calibration can be given the relation between the heat loss and the flow velocity

Principle of thermal anemometers (II)

- The basic circuitry for hot-wire and hot-film anemometry is <u>identical</u>.
- The heated wire, whose resistance is dependent on the temperature.
- Temperature changes due to velocity fluctuations (⇔resistance changes) are detected by means of a bridge circuit.
- For the sensor by Joule heating:

heat loss

$$Q = IE = I^2 R = \frac{E^2}{R}$$

<u>Constant current</u> \Rightarrow *R* changes \Rightarrow wire temperature changes <u>constant temperature</u> \Rightarrow *R* remains constant \Rightarrow *E* changes

Bio-optoelectronic Measurements

CCA & CTA

Basically two methods of operation are possible.

- CCA : (Constant current Anemometer)
 The heating current *I* is held constant.
 ⇒ *R* is then a measure for heat loss *Q*.
- CTA: (Constant temperature anemometer) The resistance R, and hence the temperature of the sensor is held constant.

 \Rightarrow The bridge voltage *E* is then a measure for Q.

Bio-optoelectronic Measurements

Hot-wire probe

- Hot-wire (*HW*) probe
 - ϕ : 1~10 μ m, L : ~200 ϕ
- Wire materials are chosen mainly according to their temperature sensitivity

 $R = R_0 [1 + \alpha_1 (T - T_0) + \alpha_2 (T - T_0)^2 + ...]$ for platinum: $\alpha_1 = 3.5 \ge 10^{-3} / {^{\circ}\text{C}}, \ \alpha_2 = -5.5 \ge 10^{-7} / ({^{\circ}\text{C}})^2$ for tungsten: $\alpha_1 = 5.2 \ge 10^{-3} / {^{\circ}\text{C}}, \ \alpha_2 = 7.0 \ge 10^{-7} / ({^{\circ}\text{C}})^2$

- In addition, the material must be mechanically robust.
- Comparison of different materials according to various criteria (1.- highest ranking):

Material	α_1	Mech. strength	Time constant
Tungsten	2	1	1
Platinum	3	4	3
Nickel-Platinum	1	3	4
Iridium(80%Pt)	4	2	2

Bio-optoelectronic Measurements

Heat transfer of a Hot-wire probe (I)

- Radiation and natural convection losses are negligible for most operating conditions.
- Conduction to the prongs can be up to 20% of Q_{FC} , and is given by Fourier as:

$$Q_C = -2k \left(\frac{dT}{dx}\right)_{sensorend} \frac{\pi d^2}{4}$$

• Forced convection (of a cylinder in parallel flow):

$$Q_{FC} = Nu \ \pi \ l \ k(Tw-Ta); \quad Nu = \frac{hd}{k}$$

Bio-optoelectronic Measurements

By An-Bang Wang

光機電工程教學資源中心 **Opto-Mechatronics Education Resources Center**

$$\hat{Q}_{R} \cdot radiation
\hat{Q}_{R} \cdot radiation
\hat{Q}_{NC} \cdot natural
convection
(+to prong)
\hat{Q}_{RC} \cdot forced
convector
$$\hat{Q}_{RC} = I^{2}R = \frac{E}{R} - \hat{Q}_{R} + \hat{Q}_{NC} + \hat{Q}_{R}$$

$$\hat{Q}_{RL} = I^{2}R = \frac{E}{R} - \hat{Q}_{R} + \hat{Q}_{NC} + \hat{Q}_{R} + \hat{Q}_{R}$$$$

Nu = Nu(Re, Pr, Gr, Ma, I/d, Δ T,...)

);
$$Nu = \frac{hd}{k}$$

Heat transfer of a Hot-wire probe (II)

• Many influentral parameters can be neglected under certain conditions.

Nu=Nu(Pr,Re)

(by constant reference temperature, fixed operation condition, excluding low velocities.) T_{∞}

 Most commonly used reference temperature is the film temperature

$$T_m = 0.5(T_w + T_a)$$

 The first theoretical solution, based on potential flow theory, for the heat transfer from circular cylinder was given by King(1914):

$$Nu = \frac{1}{\pi} + \sqrt{\frac{2}{\pi}} \operatorname{Re} \operatorname{Pr}$$

For Re×Pr >0.08

Tw

Bio-optoelectronic Measurements

Directional sensitivity of HW

- The heat loss due to force convection is dependent on direction as well as the magnitude of velocity vector.
 - U_T: tangential U_N: normal U_B: binormal

UT : bagestial UN : normal UR : binormal

- Common practice is to introduce the effective cooling velocity $U_{eff} = f(\alpha, \beta)|U|$ where α and β are the yaw and pitch angles respectively.
- It is customarily assuming E²=A+BU_{eff}ⁿ=A+B f(a,b)ⁿ|U|ⁿ
 i.e., the yaw and pitch influence can be separated from the speed influence.

Bio-optoelectronic Measurements

Hot wire and hot film

Comparison of hot-wire to hot-film probes:

- Advantages of hot-wire probes:
 - low thermal inertia
 - high bandwidth
 - high sensitivity
- Advantages of hot-film probes:
 - long time stability
 - uniform production possible (constant calibration coefficients for the same type of sensors)
 - very robust mechanically, not sensitive to contamination
 - can be easily insulated with quartz film (useful for conducting liquids)

Hot-wire by IC-technology

Advantages:
 high spacial resolution,
 high response (~MHz),
 disposable, cheap

(1um x 70 um single hot wire)

Bio-optoelectronic Measurements

By An-Bang Wang

(from Jiang et al. [1994])

(hot- wire array)

必必光機電工程教學資源中心 Opto-Mechatronics Education Resources Center

Introduction to Laser Doppler Anemometry (LDA)

Bio-optoelectronic Measurements

Bio-optoelectronic Measurements

Characteristics of LDA (I)

• Advantages:

- Non-intrusive
- no calibration required (not strongly dependent on the temperature, density, composition of the flows)
- sensitive to *velocity* magnitude and *direction*
- *linear transfer function* for velocity measurements
- measures a *single* desired velocity component directly
- high accuracy obtainable
- very high frequency response
- very *small* measuring volume
- high dynamic range (from μm/s to 1000 m/s)

Characteristics of LDA (II)

• **Disadvantages**:

- relatively expensive for set-up and maintenance
- seeding particles in the flow required
- optical access to measuring point required
- flow medium must be *transparent*
- experienced man-power recommended
- spherical particles based
- relatively huge and heavy for traditional LDA system

Bio-optoelectronic Measurements

Principle and configuration of LDA

Bio-optoelectronic Measurements

Introduction to Laser

- Laser (雷射、激光、鐳射): Light Amplification by Simulated Emission of Radiation
- **Ocharacteristics of Laser:**
 - high light intensity
 - narrow monochromaticity
 - high coherence (temporal & spatial)
 - low divergence angle (0.1°: 360°)
 - short pulse time(ns ~ ps)

Bio-optoelectronic Measurements

Development of LASER

- **1900** Planck's quantum theory
- **1905** Einstein's photon theory
- **1917 Einstein's stimulated radiation theory**
- **1954 Townes produced the 1st Maser**
- 1960/5 Maiman produced the 1st rubby Laser 1960/11 1st gas Laser (He-Ne)
- **1962 1st semi-conductor Laser(GaAs)**
- **1964 CO₂-Laser, Ar⁺-Laser, YAG-Laser, Dye-Laser**
- **1970 Excimer Laser**

Polarization Light & Laser modes

Bio-optoelectronic Measurements

By An-Bang Wang

经 光機電工程教學資源中心 Opto-Mechatronics Education Resources Center

Laser safety

- Class I: no gangeous, <0.4mW
- Class II: dangeous for direct observation, < 1mW
- Class III: 1~500mW
- Class IV: >500 mW

Bio-optoelectronic Measurements

By An-Bang Wang

必 光機電工程教學資源中心 Opto-Mechatronics Education Resources Center

Principle and configuration of LDA

Bio-optoelectronic Measurements

Beam Collimator

- Beam collimator is basically a pair of positive and negative lens, which is used to control the beam divergence of a given laser.
- Ollimator is used to adjust the positions of both laser-beam waists located at the same place, to avoid artificial turbulence caused by fringe-spacing variations.
- The need of collimator increases as the optics become more complex.

Bio-optoelectronic Measurements

By An-Bang Wang

必 光機電工程教學資源中心 Opto-Mechatronics Education Resources Center

Principle and configuration of LDA

Bio-optoelectronic Measurements

Beam Splitter

Measurements

By An-Bang Wang

光機電工程教學資源中心 RI **Opto-Mechatronics Education Resources Center**

Principle and configuration of LDA

Bio-optoelectronic Measurements

- Beam expander is recommended when measuring for the case of large distance, or high velocity gradient or low SNR.
- Beam expanders are designed to increase (a) the input beam diameter and (b) the collection aperture (for backscatter). This results in a smaller mcv and better signal quality.
- A beam expander with expansion ratio E may decrease diameter of mcv $(d_m = \frac{4f\lambda}{\pi D_{-2}\cos\varphi})$ by a factor of E, decrease measuring length by a factor of E², and improves estimated SNR.
- \odot Commerial available: E = 2 ~ 8.5

Bio-optoelectronic Measurements

By An-Bang Wang

必 光機電工程教學資源中心 Opto-Mechatronics Education Resources Center

Doppler principle (I)

The measuring principle of LDA is the *Doppler shift* of light scattered from small particles.

Doppler principle (II)

- The two expressions above can be combined to describe the optical arrangement as shown.
- The frequency detected by the photodetector becomes

• Direct detection of this Doppler shift as a velocity measure is *not feasible* for the example of backscatter. v' = v $\{U\}\{l\}/c$ $\{V\}\{l\}/c$ $\{V\}(l)/c$ $\{V\}(l)/c$

cannot be achieved.

Bio-optoelectronic Measurements

~ $\nu(1-2\varepsilon)$

Doppler principle (III)

Measuring Control Volume (I)

 O In describing the measuring control volume, the properties of *Gaussian beams* must be considered.

Bio-optoelectronic Measurements

By An-Bang Wang

经 光機電工程教學資源中心 Opto-Mechatronics Education Resources Center

Measuring Control Volume (II)

The measuring control volume (mcv) is ellipsoidal in shape

diameter of mcv $d_m = d_{e^{-2}} / \cos \varphi$ length of mcv: $l_m = d_{e^{-2}} / \sin \varphi$ no. of fringes: $N_{fr} = 1.27d / D_{e^{-2}}$

d:beam spacing before lens ^{*p*} : intersection half-angle

Signal-to-Noise Ratio

= power in each beam, watts Po

= bandwidth, MHz Δf

= scattering parameter

= visibility

$$SNR = 4 \times 10^{11} \frac{\eta_{q} P_{o}}{\Delta f} \left[\frac{D_{a}}{r_{a}} \frac{D_{o}}{f} \right]^{2} d_{p}^{2} G \nabla^{2}$$

Bio-optoelectronic Measurements

By An-Bang Wang

v

Fringe Model (I)

• *Moire fringes* can be used to illustrate the basic characteristics of an LDA. The *resulting frequency* agrees with that derived using the

Opto-Mechatronics Education Resources Center

Bio-optoelectronic Measurements

Fringe Model (II)

•However, this model yields an *incomplete* and physically *incorrect* description of the resultant LDA-signal properties because the shape of particles, the optical properties of *the particle material*, the *intensity* distribution inside the measuring volume, and the complex spatial light scattering mechanisms are not taken into account.

Bio-optoelectronic Measurements

Directional Sensitivity

- The simple dual-beam LDA does not allow the direction of the particle to be determined. In addition the measurable turbulence level is very low.
- The signal processor may require a *minimum number of Doppler periods for validation*, thus restricting particle trajectories to a certain range of angles. This leads to a biased velocity.
- Both the directional sensitivity and the problem of measuring high turbulence levels can be resolved using *frequency shifting*.

Bio-optoelectronic Measurements

By An-Bang Wang

Frequency Shifting

- The concept of frequency shifting involves producing a *frequency difference* between two LDA beams. This can be achieved by shifting the frequency of one beam or of both but different amounts.
- The detected frequency will be larger or smaller than f_s depending on the sign of the velocity.

Bio-optoelectronic Measurements

Frequency Shifting

- O Particle with U_⊥=0 still produce signals. By choosing f_s correctly there will be sufficient Doppler periods to allow validation by the processor. Inser beam
- Methods of frequency shifting:
 - rotating grating (mechanical): simple, inexpensive, moderate accurate,f_s=n N<15MHz

- **Pockel's cell**: produces transient shift magnitude
- Kerr cell (electro-optical): processing complex
- Bragg cell (AOM): highly stable, accurate, relative high shift frequency

Bio-optoelectronic Measurements

Bragg Cell

- The most widespread approach of frequency shifting is the single or double Bragg cell module.
- The single Bragg cell requires use of electronic downmixer.
- 90% of the incident light intensity for the 1storder beam is achievable.

Bio-optoelectronic Measurements

By An-Bang Wang

Receiving Optics (I)

• The *effective mcv* is the volume imaged onto

 $N_{fr'} = N_{fr} d_{ph} / (M d_m)$

Bio-optoelectronic Measurements

By An-Bang Wang

Receiving Optics (II)

- Good *SNR*
- Low laser power is needed
- more complex traversing rig

- **Backward scattering**
 - Only one optical acess necessary
 - Self-adjusting
 - more laser power needed

Bio-optoelectronic Measurements

By An-Bang Wang

Photodetector

- The photodetector convert light intensity to a voltage. Three types of devices are commonly used in LDA systems: *Photodiode, Avalanche diode, Photomultiplier*.
- For *photodiode*: high resistence is desirable to give sufficient amplification and to minimise the thermal noise, but a low resistance leads to better frequency response. The *compromise* limits the use of diodes to use with *strong scattering* and *low Doppler frequency*.
- The *avalanche effect* takes place when the photodiode is reverse-biased near its breakdown voltage.

Bio-optoelectronic Measurements

Bio-optoelectronic Measurements

Required Properties of Particles

- Suitable tracer particles used for LDA measurements should have the following properties:
- small slip velocity
- good scattering properties to yield high signal strength
- good produceability of particles
- cheap
- chemically inactive
- non-toxic

Light Scattering from particles (I)

- The light scattering phenomena is described by the *Mie-scattering theory* for spherical particles. $2r \pi$
- Mie parameter: $q = \frac{2r_p\pi}{\lambda}$ and *m* (refractive index)
- The intensity of scattered light depends on:
 - incident intensity
 - wavelength (λ)
 - particle shape , particle size (r_p), particle concentration and particle distributions
 - index of refraction of particle
 - scattering angle
 - Bio-optoelectronic Measurements

Light Scattering from particles (II)

For a given system, the signal intensity is several orders of magnitude larger in forward scattering arrangement.

Bio-optoelectronic Measurements

Light Scattering from particles (III)

Signal Processing Tasks (I)

- The signal processing has the broad task of extracting fluid mechanics information from the Doppler signals. This entails
 - signal conditioning
 - determination of **Doppler frequency**

computation of

coordinate

Bio-optoelectronic Measurements

transformations.

By An-Bang Wang

Signal Processing Tasks (II)

• The signal processor is *not* an *independent* part of a LDA system.

• Don't expect to improve your signal by signal processor.

 There are several (either time domain-based or frequency domain-based) instruments available to process the LDAsignal.

Bio-optoelectronic	By An-Bang Wang
Measurements	

Characteristics of LDA Signals

Bio-optoelectronic Measurements

By An-Bang Wang

Signal Conditioning

- Signal conditioning improves signal quantity considerably.
- A high pass filter is used to remove the signal pedestal and make it symmetric. (If necessary, frequency shifting can be used to insure good separation of pedeatal and Doppler frequencies.)
- A low pass filter is used to remove high frequency noise content in signal.

By An-Bang Wang

Signal Processor

 \odot The signal processor has the task of determining the signal frequency. ${}_{\rm U}$

 $L = \frac{v_D \lambda}{2\sin\varphi}$

 There are several instruments available to do this,

- **Frequency domain**
- filter bank
- spectrum analyzer
- tracker

Time Domain

- -counter
- -photo correlator
- -transient recorde
- Fabry-Perot interferometer

Bio-optoelectronic Measurements

Choice of Signal Processor

- The choice of signal processor depends on:
 - particle density (= particles / integral time scale)
 - digital or analog results
 - signal quality (SNR)
 - required accuracy
 - dynamic range and signal amplitude (bandwidth)
 - stationary or transient flowfield
 - sample processing speed
 - user-friendliness
 - cost

Pulsed Doppler Ultrasonic technique

• Pulsed Doppler Ultrasonic technique

Pulsed Doppler Ultrasonic technique

Introduction to Particle Image Velocimetry (PIV)

Bio-optoelectronic Measurements

Introduction to PIV

- First commercial PIV in 1988
- PIV is a quantitative flow visualization by using an optical method to measure fluid velocity at many points in a flow field simultaneously.
- Similar techniques:
 - PTV: particle tracking velocimetry, offers lower accuracy and resolution for low seeding density. LSV: laser speckle velocimetry,

Characteristics of PIV

- Advantages:
 - provides instantaneous velocity vectors in detail (for flow structure, especially for turbulence).
 - provides spatial gradients of instantaneous and average flow properties for many points
 - Ideal for unsteady or periodic flows
 - obtain global nature of flows
- Disadvantages of PIV:
 - expensive cost
 - seeding
 - small measuring region

Principle of PIV

Δt - time between two pulses	Velocity of particle
Δx - particle displacement in x direction	$u_x = \Delta x / \Delta t$ as Δ
Δy - particle displacement in y direction	$u_y = \Delta y / \Delta t$ as 2

Bio-optoelectronic Measurements

By An-Bang Wang

e A $\Delta t \rightarrow 0$ $\Delta t \rightarrow 0$

Data processing of PIV

- The image displacements are obtained by doing the spatial crosscorrection or spatial autocorrection of the image intensity field.
- Spatial cross-correlation:
 - Particle images from each laser pulse is on separate frames
 - No directional ambiguity (because sequence of frames is known)
 - Dynamic range can be greater than 100 to 1
 - Robust algorithm can detect lower signal quality
- Spatial Autocorrelation
 - Double or multiple pulses on each frame
 - Directional ambiguity
 - Dynamic range may be up to 10 to 1

Crosscorrelation Processing

Each frame contains particle images from one laser pulse.

Analysis by correlating the two image fields from separate video frames.

Advantages:

works very well to >400 m/sec (with specially developed cameras and frame straddling technique)

no additional hardware required to resolve flow direction

frames need not be successive (especially for measuring very low speed flows)

Bio-optoelectronic Measurements

Frame straddle with free-run camera

max. measuring velocity is function of image size and camera type

Bio-optoelectronic Measurements

Frame straddle with controlled camera

Measurements

Autocorrelation Processing (I)

99

Directional ambiguity: Is the flow direction from C_1 to C_2 or from C_2 to C_1 ?

Bio-optoelectronic Measurements

By An-Bang Wang

Autocorrelation Processing (II)

Solution: using Image shifting to make all displacements to be positive

Bio-optoelectronic Measurements

Components of PIV system

A complete PIV system combines three sub-systems:

- Illumination Subsystem (Laser, Beam delivery system, light optics)
 - Illuminate a plane in the flow (seeded) using a pulsed laser
- Image Capture Subsystem (CCD Camera, Camera Interface, Synchronizer-Master control unit)
 - Capture the particle images and record them
- Analysis and Display Subsystem
 - Calculates and displays a two dimensional vector field from the particle image fields
 - can be done on-line or off-line

Introduction to Aerosol generation & Particle Size Measurement

Bio-optoelectronic Measurements

Aerosol/Powder in Daily Life

Powder: Particle size less than 1000 μ m (British Standard 2955); most often encountered powder size between 0.01 μ m and 1000 μ m

Allergy, Lung disease Food (ice cream, Coffee, tooth paste, ketchup, ...etc.) Medical treatment Safety (Dust explosion ...etc.)

Bio-optoelectronic Measurements

Producing powder

Measurements

Opto-Mechatronics Education Resources Center

Vibrating Orifice Aerosol Generator

Bio-optoelectronic Measurements

By An-Bang Wang

必 光機電工程教學資源中心 Opto-Mechatronics Education Resources Center

Vibrating Orifice Aerosol Generator

- *Q*: liquid flow rate
- *f*: oscillation frequency.
- C: volumetric concentration of the nonvolatile portion.

Bio-optoelectronic Measurements

By An-Bang Wang

Filtration Technology

(http://www.iosh.gov.tw/data/f5/news920521.htm)

Bio-optoelectronic Measurements

By An-Bang Wang

必 光機電工程教學資源中心 Opto-Mechatronics Education Resources Center

Optical Measuring Principle

(c) $x \leq 1$, Mie's scattering theory I(θ)=($\lambda^{2}/8 \theta r^{2}$)($i_{1}+i_{2}$)

(from Y.-D. Tai)

Bio-optoelectronic Measurements

By An-Bang Wang

必 光機電工程教學資源中心 Opto-Mechatronics Education Resources Center

Hardware of Phase-Doppler System

Fringes in Space from Reflected Beams

- In single phase flows, the Doppler signals can be explained as created by small scattering particles penetrating a fringe system in the crossing region of two light beams. The particles should be small with respect to the fringe spacing.
- To measure the velocity of large particles the two incident beams of an anemometer are reflected to produce a fringe pattern on the photodetector mask.

Phase Difference and Particle Size

PDA-Phase Relationships

References

- Andreopoulos, J. "Improvements of the performance of triple hot wire probes", Rev. Sci. Instr. 54(6), June 1983.
- Antonia, R.A., Browne, L.W.B. and Chambers, A.J. "Determination of time constants of Cold wires". Rev. Sci. Instr., 52(9) 1382-1385, 1981.
- Bradshaw, P. "An introduction to turbulence and its measurements", Pergamon Press, Oxford, 1971.
- Brunn, H.H. and Tropea, C.D. "Calibration of normal inclined and x-array hotwire probes", SFB80/M/170, sonderforschungsbereich 80, Univ. Karlsmhe, 1980.
- Champagne, F.H., Slaicher, e.A. Wehrmann, O.H."Turbulence measurements with inclined hot wires, Part1: heat transfer experiment with inclined hot-wires," H. FL. Mech. 28,153-176,1967.
- Collis D.C. and Williams M.J. "Two-dimensional convection from heated wires at low Reynolds Numbers", J.F.M. 16. 357-384,1959.
- Durst, F., Melling, A., Whitelaw, J.H., "Principles and Practice of Laser-Doppler Anemometry" 2nd Ed. Academic Press, 1981.
- Freymuth, P. "Bibliography of thermal Anemometry" TSI Inc., 1992.

References

- Friche, C.A. and Schwartz, W.H. "Deviation from the cosine law for yawed cylindrical anemometers", J. Appl. Mech., Vol.35,662-665.
- Hinze, J.O, "Turbulence", Mcgraw-Hill, N.Y., 1975
- King, L.V. "On the convection of heat from small cylinders in a stream of fluid. Determination of convective constants of small platinum wires with application to hot-Wire Anemometers. Phil.Trans. A 214,373-432, 1914.
- Koch, F.A. and Gartshore, I.S. "Temperature effects on hot wire anemometer
- calibrations", J. Phys. E: S 5, 58-61, 1972.
- Kramers, H. "Heat transfer from spheres to flow Media" Physica. 12, 61-80, 1946.
- Sandborn, V.A. "Resistance Temperature Transducers", Metrology Press, 1972.
- Tennekes, H and Lumley, H.L., "A first course in turbulence", MIT Press, Cambridge Mass. 1972.
- Tropea, "Emfuhrung in die Stroemungsmesstechnik", LSTM-Erlargen, Erlargen, 1994.
- Willmarth, W.W. and Bogar, T.J. "Survey and new measurements of turbulent structure near the wall". Phys of Fluids, Vol. 20, 1997.

Bio-optoelectronic Measurements

By An-Bang Wang

References

- ⊙ Ruck, B. "Laser-Doppler-Anemometrie" AT-Fachverlag GmbH, 1987.
- ⊙ Goldstein, R.J., "Fluid Mechanics Measurements" 2nd Ed. Taylor & Francis publishers, 1996.
- ⊙ Seminar Notes of Advances on Laser-Doppler Anemometry, NTU-IAM, 1991.
- ⊙ Seminar Notes of Advances on Laser-Doppler Anemometry, NTU- IAM, Taipei, 1991.
- WWW.TSI.COM
- 雷射熱流量測夏令營講義, NTU-IAM, Taipei, 1995.
- ⊙ 燃燒診斷技術基礎研究專題研討會講義, NTUST, Taipei, 1997
- ⊙ 雷射熱流量測技術研討會講義, NTU-IAM, Taipei, 1998.
- ⊙ Proceedings of Sino-German Workshop for measurement and Generation of Nano-Micro-meter Droplets and Particles, NTU-IAM, Taipei, 2002
- ⊙ Shau, Y.H.,醫用流力講義, NTU-IAM, Taipei

