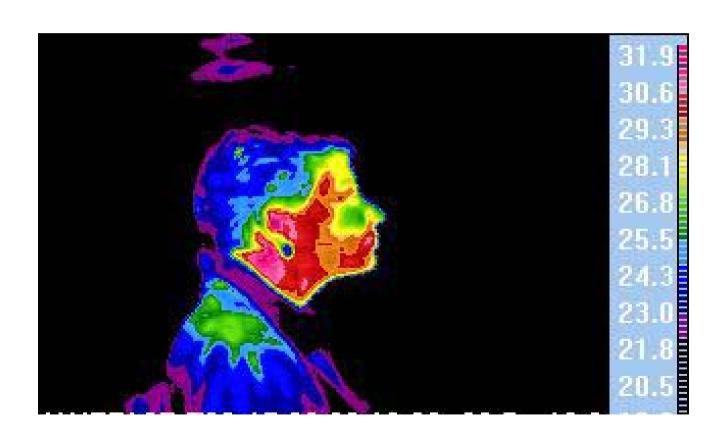
Thermal Infrared Systems

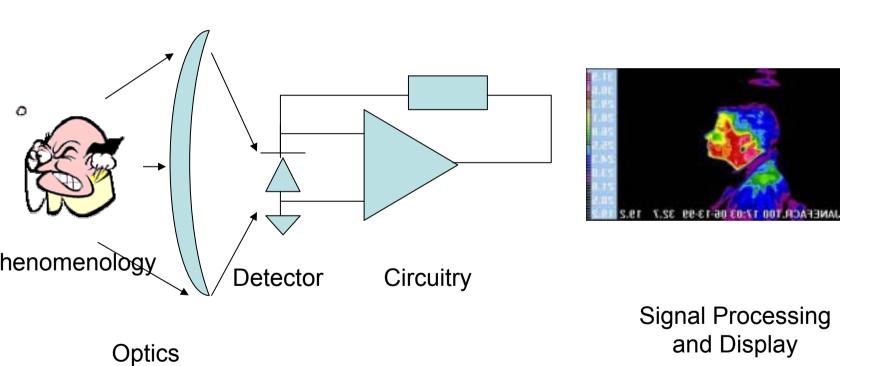
Lecturer: B T Yang 楊丙邨 March 2005 NTU



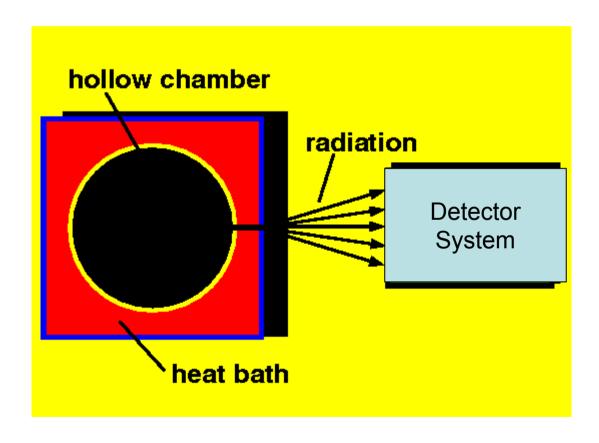
Lecture Outline

- 1. Phenomenology: "What is"
- 2. Optics
- 3. IR Detectors: Thermal, PC, PV
- 4. IR Detector Circuitry and Noises
- 5. IR Systems and Applications

Typical IR System



IR is Never Complete without Introducing the "Blackbody"



"Black" means No Light is Reflected, but "Light" can be emitted!

Grooved Planar Black Body Source

"Grooved surface enhancing the emissivity

Absolute Blackbody Radiance Calibration Standard: Metal Freeze Temperature

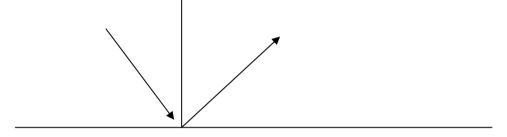
Pure Metal	Freeze Temp* (°C)	Pure Metal	Freeze Temp* (°C)
Gallium	29.7646**	Aluminum	660.323
Indium	156.5985	Silver	961.78
Tin	231.928	Gold	1064.18
Zinc	419.527	Copper	1084.62

Definition of a Black Body

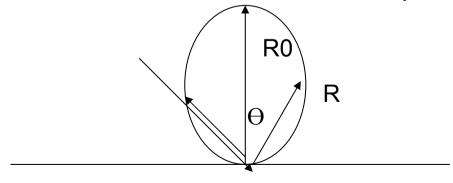
- A blackbody absorbs all incident radiation; r=0
- At a given temperature, no surface can emit more energy than a blackbody
- A blackbody is a "diffuse" emitter that follows the "Lambertian Laws"

Lambertian Law

Specular Surface (reflective)

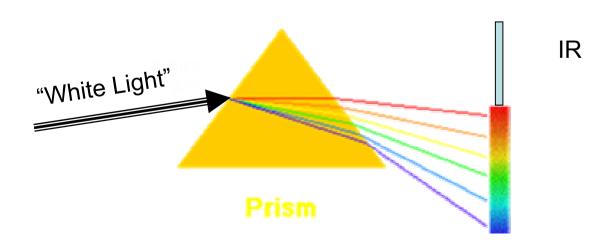


Lambertian Surface (diffuse surface)



The beginning of Infrared Infra= Ln. below

 In 1800, Sir William Herschel, using a prism to spread sunlight, observed the heating "beyond the red end" of the visible light spectrum



IR: Heat?

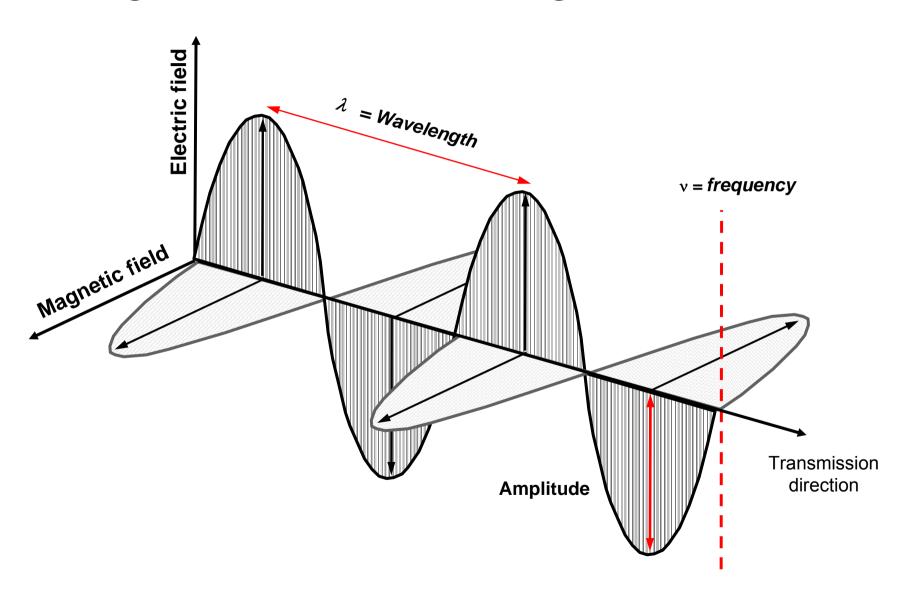
 A known effect of infrared light on skin is dilation of blood vessels that transport blood to and from the skin for cooling=> sensation of heat!

According to Kirchhoff Law, if r=0

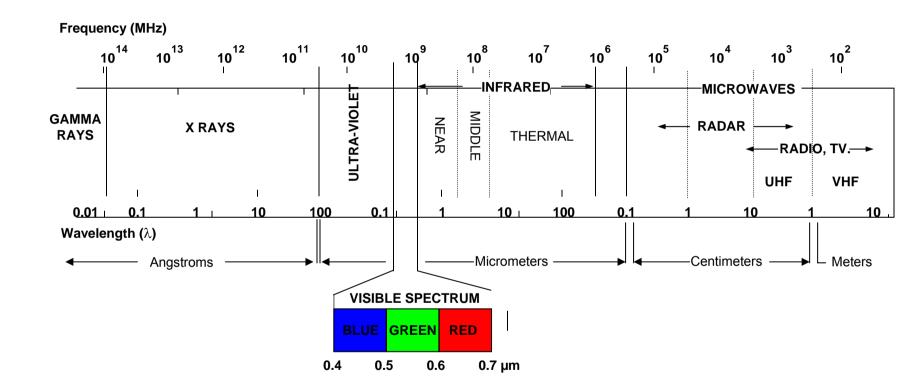
$$\varepsilon$$
(absorptivity)= σ (emissivity)

 Since skin is a good IR emitter then it must be a good IR absorber!

Light: An Electromagnetic wave



The Electromagnetic Spectrum



IR Frequency and Energy

- Frequencies: $.003x10^{14}$ to 4.3×10^{14} Hz
- Wavelengths: 1 mm 0.7 μm
- Quantum energies: 0.0012 1.16 eV

```
\Delta E [eV]=1.24 / \lambda [\mum]
For Si, \Delta E =1.13eV; \lambda cutoff=1.1 \mum
```

Planck's Equation

 M_{λ} : Spectral Exitance [W·CM⁻² · μ m⁻¹]

 λ : wavelength [μ m]

T: absolute temperature [K]

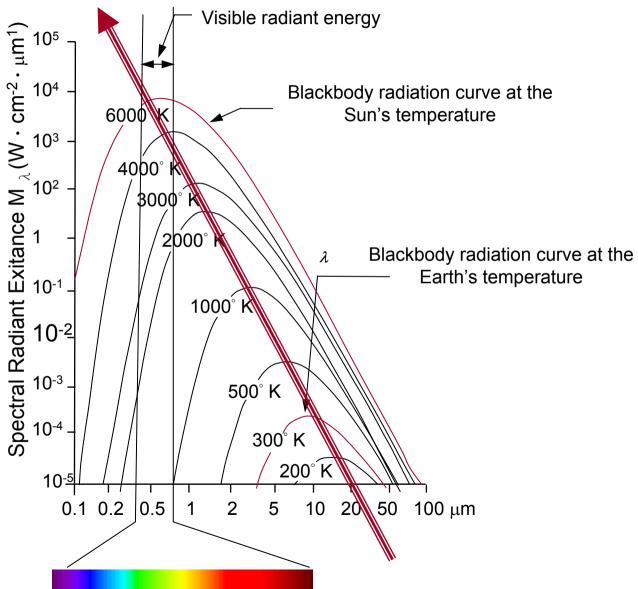
h= Planck's constant =6.63x10⁻³⁴ W sec²

C= $3x10^{14} \mu$ m /sec

$$M \qquad \lambda \qquad (\lambda \quad , \quad T \quad) = \quad \frac{2 \quad \pi \quad hc}{\lambda^{5}}$$

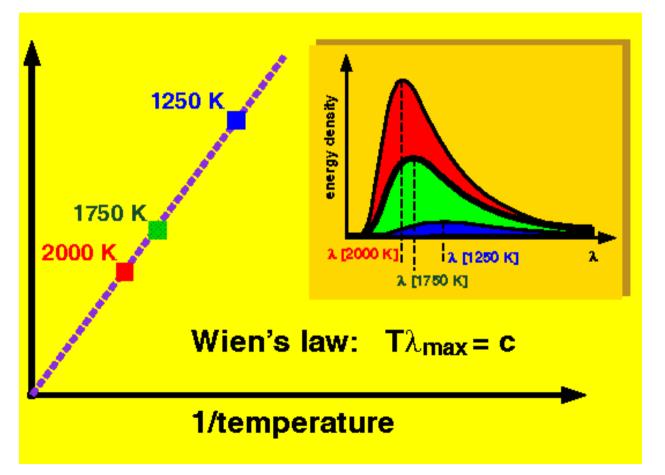
$$= \frac{3.74 \times 10^{-4}}{\lambda^{5} \left[e^{\frac{1.44 \times 10^{-4}}{\lambda}T} - 1 \right]}$$

Spectral exitance of a blackbody



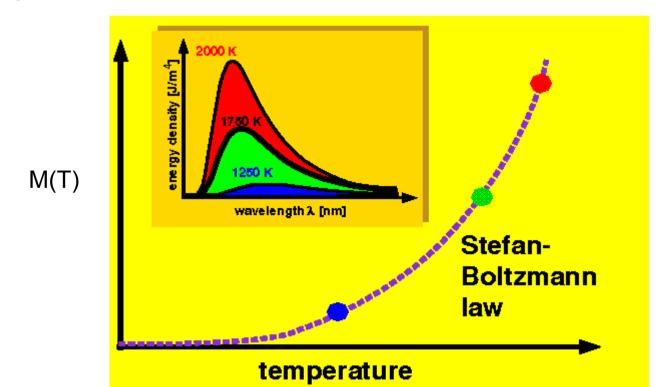
Wien's Law

• λ_{max} T~3000 μ m-K



Stefan-Boltzmann's Equation of Radiation

- M(T)= $\int M_{\lambda}(\lambda, T) d\lambda = \sigma T^4$ [W·cm⁻²]
- M(T): Exitance (not Spectral Exitance)
- *O* : Stefan-Boltzmann's constant 5.67x10⁻¹² W ⋅ cm⁻² ⋅ K⁻⁴



Grey Body?

- When emissivity ε is not unity
- Most physical surfaces are grey bodies $\epsilon_{\rm skin}$ ~ 0.95, then it must be "Approximated as a Blackbody

$$M_{\lambda} = \varepsilon M_{\lambda}$$
$$M = \varepsilon \sigma T^{4}$$

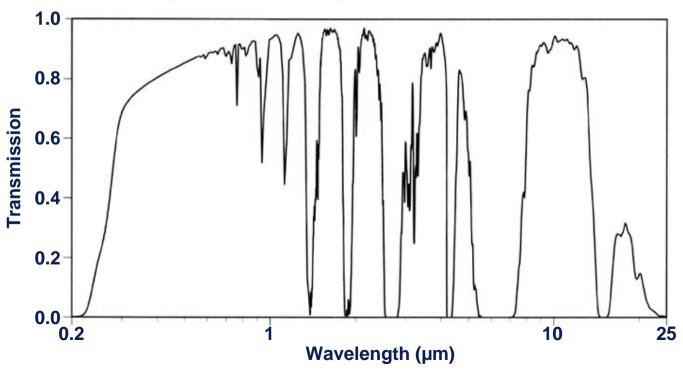
Atmospheric Transmission Spectra

UV VNIR SWIR MWIR LWIR

For Ref:

NIR: 0.7-1.1 μm; SWIR:1.1-3.0 μm; MΩIP:3-5 μμ;

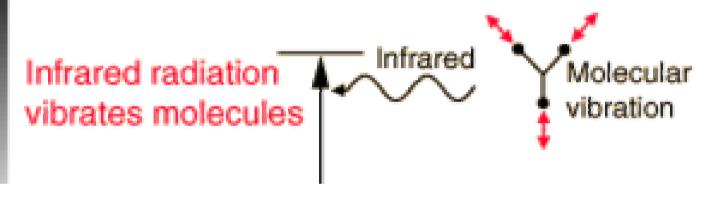
LWIR: 8-14 μ m; VLIR: > 14 μ m



Infrared Interactions

http://hyperphysics.phy-astr.gsu.edu/hbase/mod3.html#c3

 The result of infrared absorption is heating of the tissue since it increases molecular vibrational activity..



•

Discrete Energy State

Planck's 1900's "lucky Guess" ∆E=hv

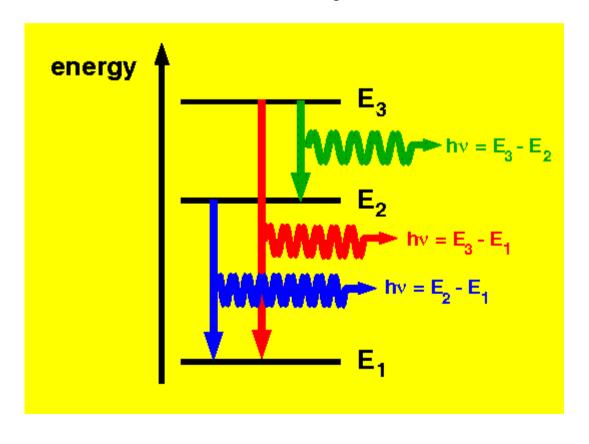
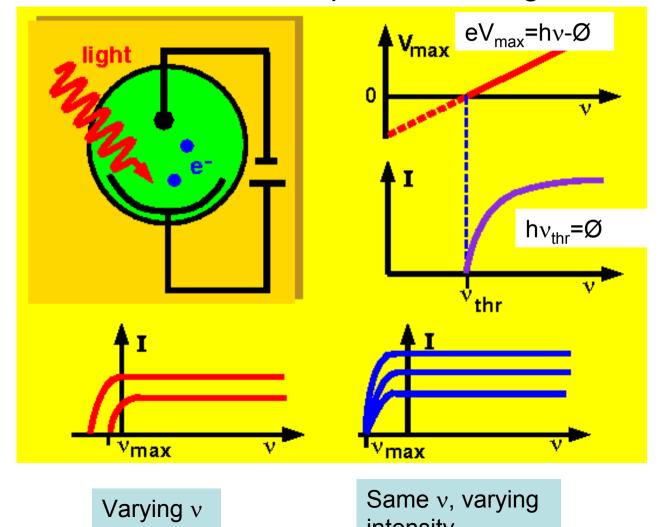


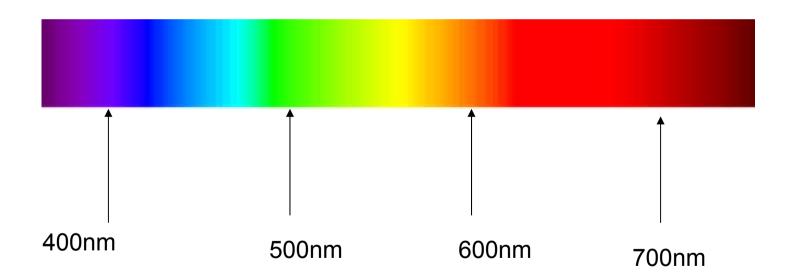
Photo-Electric Effect

Eienstein 1905's Paper Confirming the Discret Energy



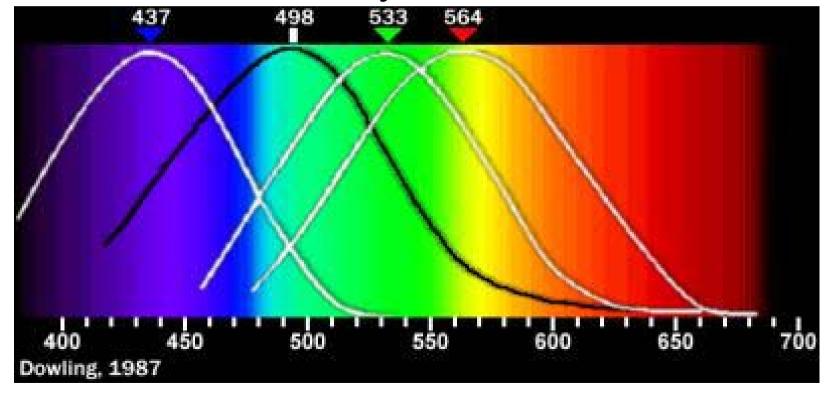
Visible Spectral Range

Visible Band: 400nm to 700nm



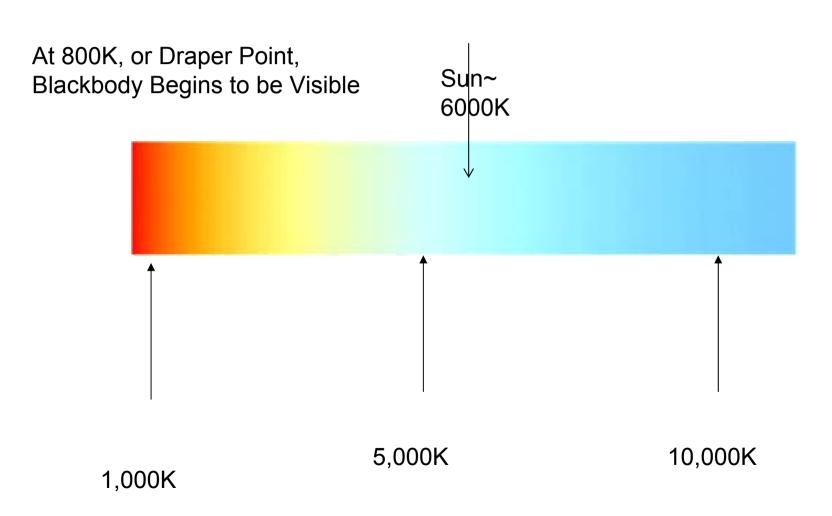
Eye's Cones' (3) and Rods' Responses

- Rods for night vision (more sensitive)
- Cones for color day vision



"Color" Temperature

An Apparent Visible Color of a Blackbody at T



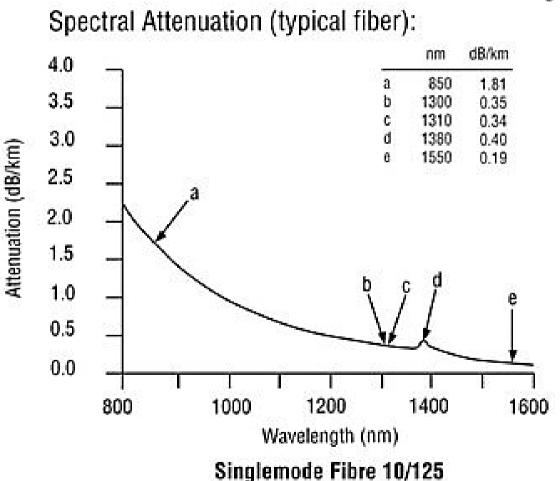
Night Goggles are "not" true Thermal Images

 Night Goggle Images are "Reflected NIR Images", not "Emitted Thermal images"

Many Low-Cost Low-Light Detection Systems are NIR Systems

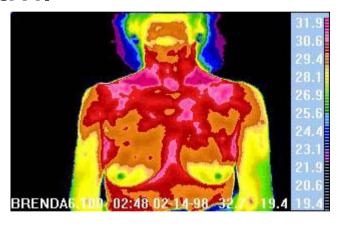
"Near IR Wavelength Used for Optical Communications

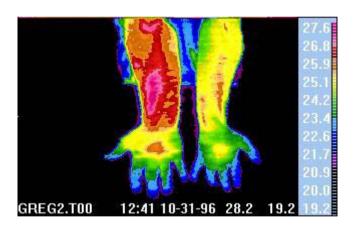
"Single mode fiber" single path through the fiber



Human Thermal Images

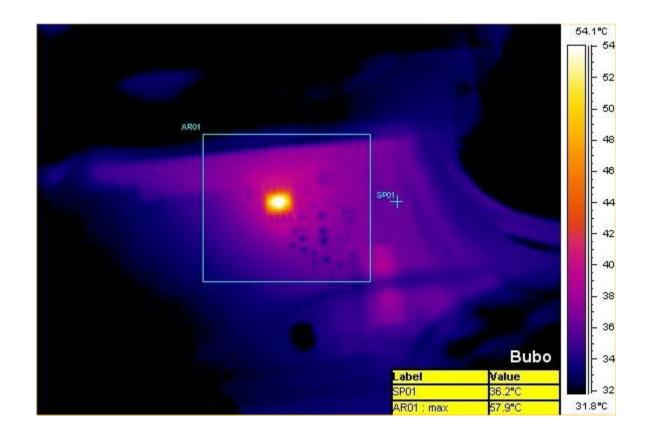
http://www.ir55.com/infrared_IR_camera.h
 tml



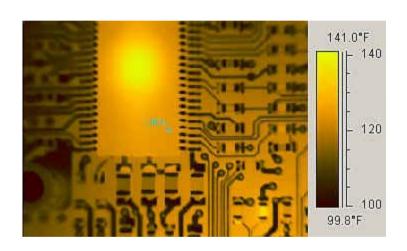


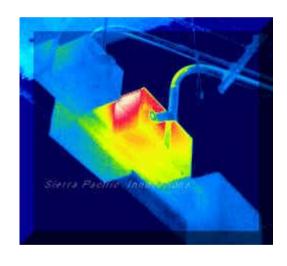
PC Board Localized Heating



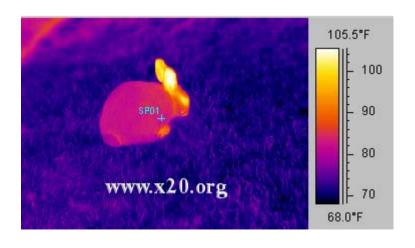


Localized IC Chip Detection



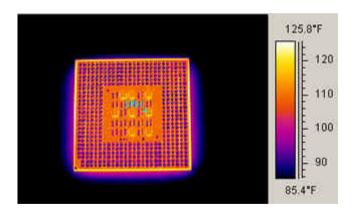


Burglar Detection



Underside Celeron Chip

•

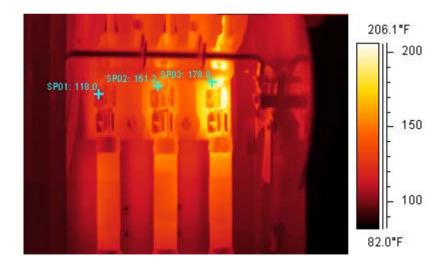


SARS Temperature Screening

98.6°F 90 80 70 65.4°F

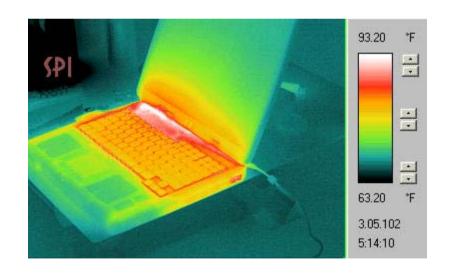
Preventive Maintenance

Electrical Fuse Thermal Image

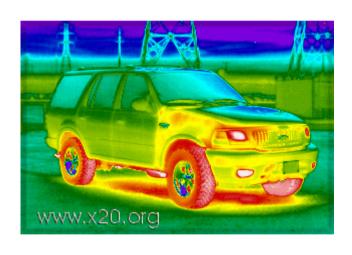


Thermal Management

•

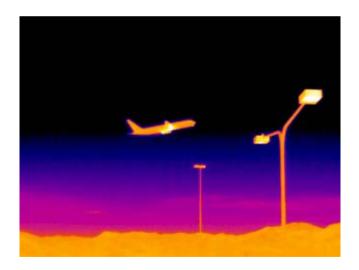


Defense Applications



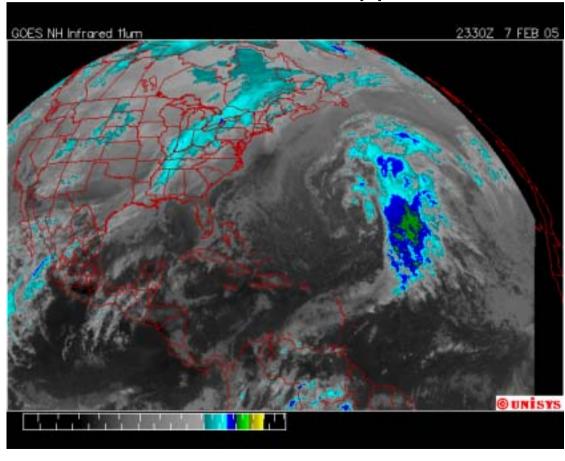
Sky Surveillance

Collision Prevention



Weather Monitoring

Geosynchronous Weather Satellite Application



What "Limits" Your Measurements?

 Spatial (How Small an Area Can the System Resolved?):

Optics

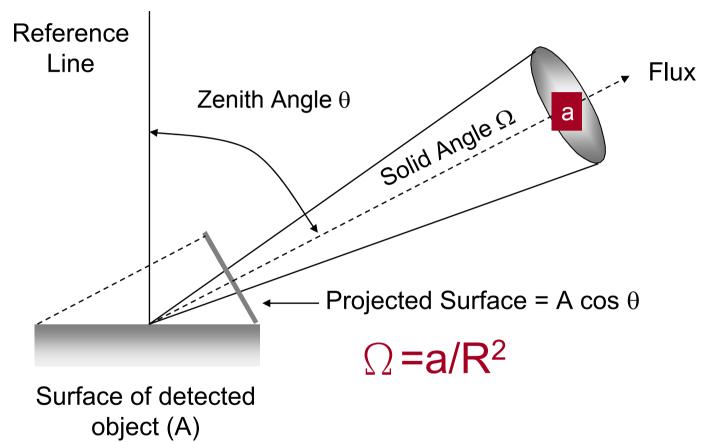
2. Temporal (How Fast Can the System Do?):

Detector and Electronics Responses

3. Resolution of the System (What is the Smallest Temperature the System can resolve?):

NEP

Solid Angle Concept



Radiance L

 Radiance is Defined as the Power per Unit Area per Steradian(Sr)

L[W m⁻² Sr⁻¹]=M(T)/
$$\pi$$

And
The so is the "Spectral Radiance"
 L_{λ} [W m⁻² Sr⁻¹]=M $_{\lambda}$ (T)/ π

Solar Constant K_{solar}(Example)

- Solar disk "subtends" 1/2°(or 9 mRadians) in view, the solar constant is the total Radiance Power per unit area
- Since the Radiance is $L=1/\pi M(6000K)=(\sigma/\pi)x6000^4=2.34x10^7W \cdot m^{-2} Sr^{-1}$
- The solid angle of the sun is
- $\Omega = (\pi/4)(0.009/2)^2 \sim 6.4 \times 10^{-5} \text{ Sr}$
- The Solar Constant is then:
- $K_{solar} = L \cdot \Omega \sim 1.5 \text{ KW/M}^2$
- • Ø Stefan-Boltzmann's constant 5.67x10-8 W · m-2 · K-4

Equilibrium Temperature Concept

- The Total Power Absorbed by a 1M² Plate Perpendicular to Sun Rays is a Solar Constant K_{solar} of 1.5KW
- The Radiated Power is
- The Equilibrium Thermodynamic Condition Stipulates:
- $\sigma T_{\text{plate}}^{4} = K_{\text{solar}}$
- $T_{plate} = (1500/\sigma)^{1/4} \sim 403K = 130^{\circ}C$

How to Manipulate the Equilibrium Temperature T_{equi}

- By varying Surfaces Solar Absorption Coefficient α and ε
- For α of 0.2 and ε of 0.9, $T_{equi}\sim 277K=>4°C!$
- $\alpha K_{\text{solar}} = \varepsilon \sigma T_{\text{plate}}^{4}$

$$T_{equi} = \sqrt[4]{\frac{\alpha K_{solar}}{\varepsilon \sigma}}$$

•For α of 0.2 and ε of 0.9, T_{equi} ~277K=>4°C!

Why is a Metal Surface so Warm in the Sun?

Polished Metal Surfaces have low α and ε Assume $\alpha = \varepsilon = 0.2$

$$T_{equi} = \sqrt[4]{\frac{\alpha K_{solar}}{\varepsilon \sigma}} = \sqrt[4]{\frac{0.2X1500}{0.2X5.67X10}} = 403K!$$

• σ : Stefan-Boltzmann's constant 5.67x10⁻⁸ W · m-2 · K⁻⁴

Does "Absolute Temperature" Have to Do with Heat Transfer?

Conduction

$$\Delta Q \sim \Delta T$$

Convection

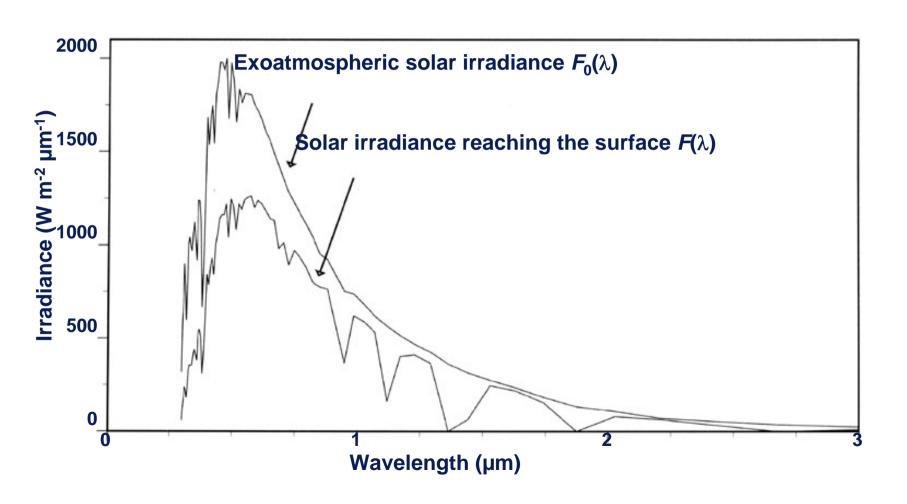
$$\Delta Q \sim \Delta T^{n}$$
; $n \neq 1$

Radiation

$$\Delta Q \sim \Delta (T_1^4 - T_2^4)$$

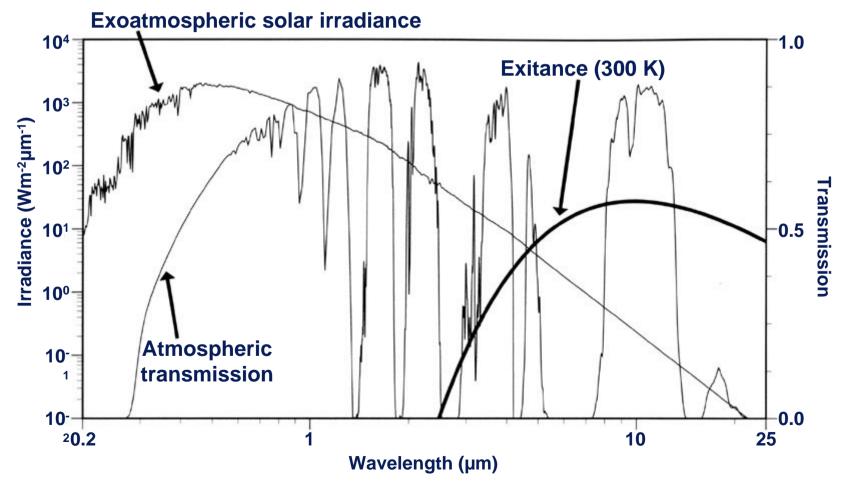
Radiative Heat Transfer is the Only Form of Heat Transfer that requires the knowledge of Absolute Temperature instead of Temperature Difference

Scattering of Sunlight by the Earth-Atmosphere-Surface System



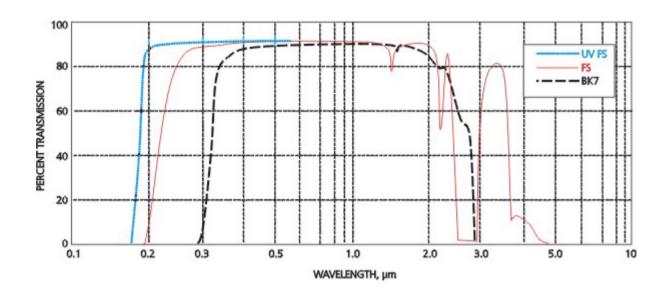
Atmospheric Transmission and Greenhouse Effects

http://tbrs.arizona.edu/education/553-2004/2004/Lect083104_Ch2.ppt-link.ppt#21

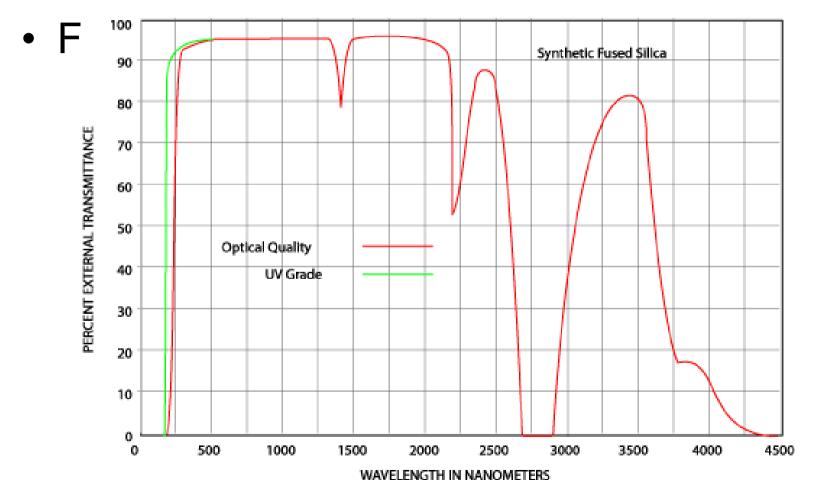


BK-7 Transmission Curve

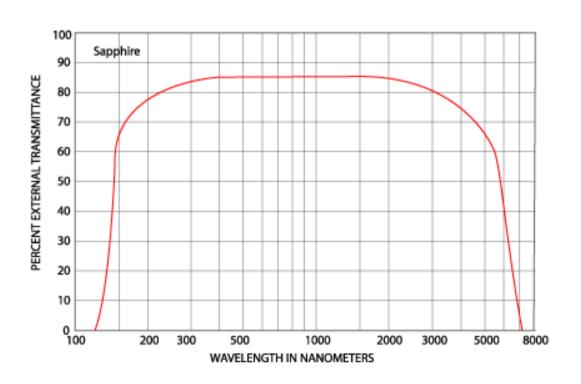
- Most Plate Glass, Similar to BK7
- Plate Glass is Opaque to LWIR



Fuse Silica (quartz)Transmission



Sapphire Transmission

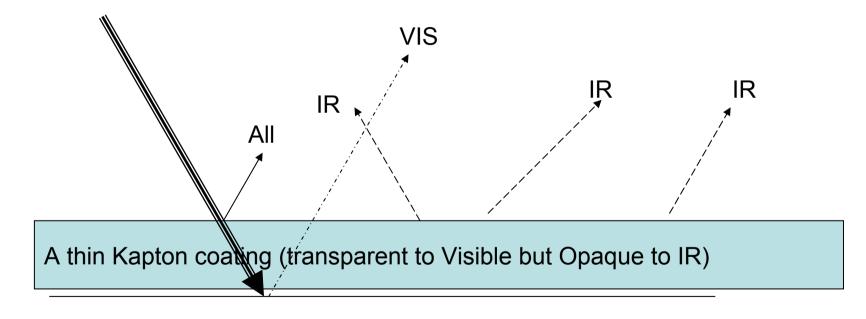


Why is the Interior of a Car so Warm in the Sun?

 Sun(6000K) warms a car with all wavelengths, but the interior of the car (300K-400K) emits IR (mostly around 10 μm) that can not pass through the glass.

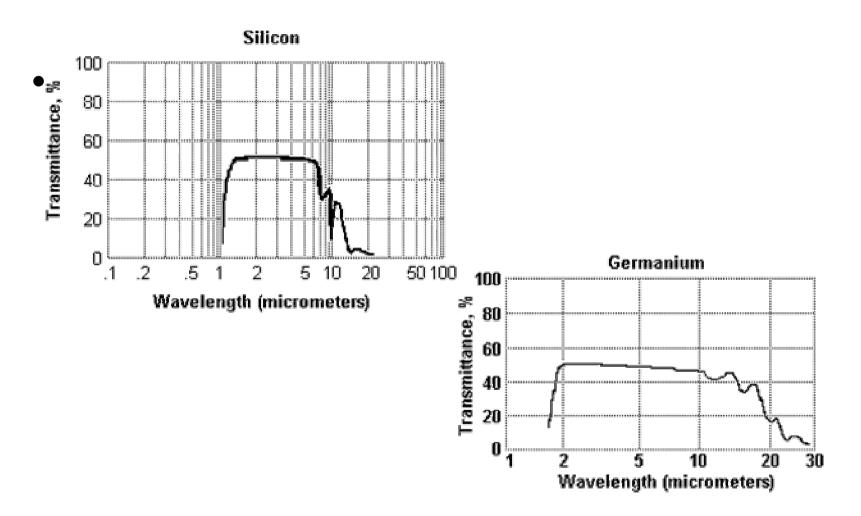
So How Does a Space Suit Work in the Sun?

By a "Secondary Mirror" Surface!



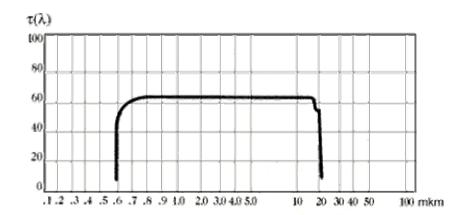
Metallic Surface to reflect Most the Visible Lights

Si and Ge IR Transmissions



ZnSe Transmission

http://www.almazoptics.com/ZnSe.html



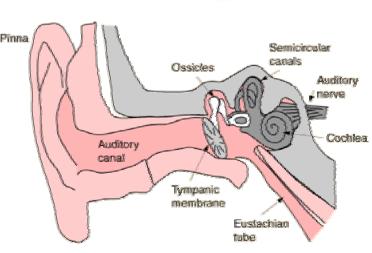
Regardless the "skin tone" difference, "all men are equal" in Infrared

Yes, from 0.95-- 0.98; almost black!

What is an Aural Thermometer", or Infrared Aural sensor

- Tympanic cavity as a blackbody cavity
- Emissivity~1.00
- Readily calibrated

**Must be in a cavity!!

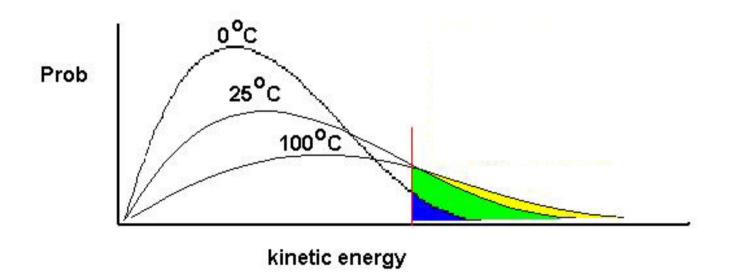


The Infamous SAR Fighter: Ear Cavity Thermometer

- a clinically reliable indicator of body core temperature
- Pyro-Electric
 Transducer

Electron Thermal Energy: Why IR Detectors Must be Cooled!

$$KE_{avg} = \left[\frac{1}{2}mv^2\right] = \frac{3}{2}kT$$



NEP Concept

If we use the entire spectrum, then to detect 38°C (vs. 37 °C), the difference is [(38 +273)/(37 + 273)]⁴ = 1.013%

- So to resolve 1°C the "system" must be able to resolve 1.3% difference
- =>Noise Equivalent Power or NEP

How good is my System Stacking Against the Others?

D* [cm-
$$\sqrt{Hz/W}$$
]=(A_{det} Δf) ^{1/2}/NEP

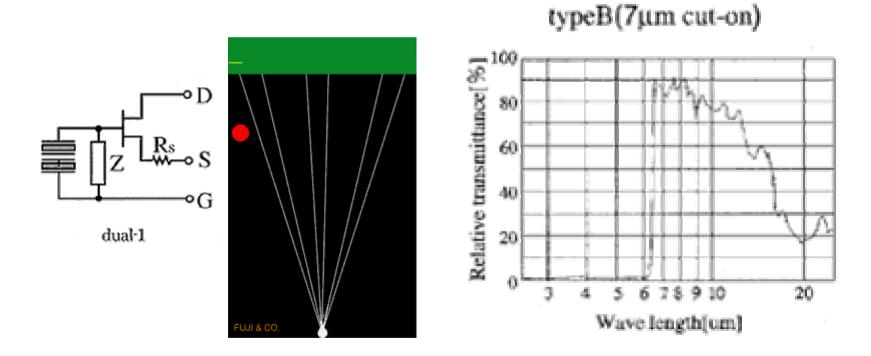
Pyro-electric Detectors

- Pyro: Gk "Fire"
- Pyro-electric: electrical output caused by heat
- Sometimes used for "fiery sparks" display for stage effects
- Low sensitivity, low cost
- Usually for intrusion detection only

Pyro-electric Detector

polyethylene Fresnel lens are typically used for their low costs

TGS (Tri-glicine-sulfate)



http://www.fuji-piezo.com/TechGen.htm

PV Hg_xC_{1-x}Te

- Short for "photo-voltaic Mer-Cad-Telluride",,or, "Mer-Cad"
- Chemical compound of HgTe and CdTe
- Response ranging from 1µm to 5.5µm, and 8µm up to 13µm, depending on the Hg to Cd ratio
- "Sprite" Detector: Signal-Processing-inthe-Element
- Most versatile IR detector

PC HgCTe

- Response to 18 microns
- Intrinsic Detectors
- Need "chopping" because of large 1/F noise
- Response varying with temperature
- Operative in higher temperature than PV

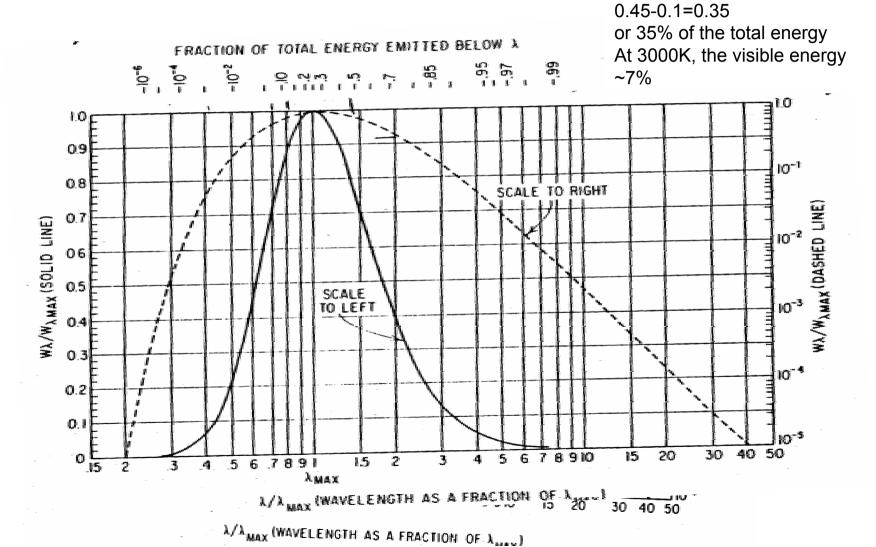
Thermal Transducer is "Export Control" Items

InSb, HgCdTe, and room-temperature
 Thermal-pile Focal Plane Arrays (FPA) are all "Strategically sensitive" items

References

- Electro-Optics by Lewis J Pinson, John Wiley & Sons, Inc., (1985)
- Modern Physics by Serway, Moses, and Moyer, Saunders College Publishing, 1997
- Optical Radiation Detectors by Dereniak and Crowe, John Wiley and Sons
- Infrared Handbook by Wolfe etc., Environmental Research Institute of Michigan

Normalized Blackbody Equation



At T=6000K, λ max=0.5 μ m

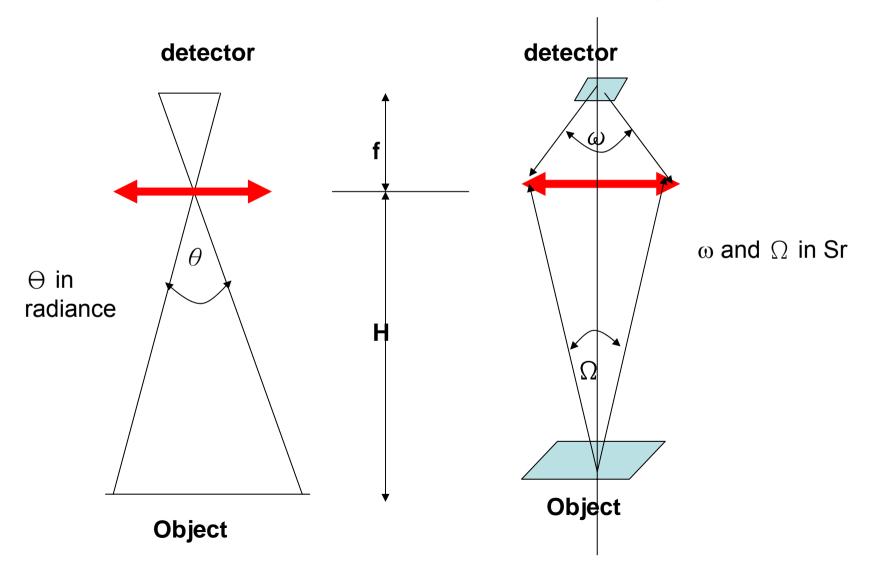
Since o.4< $\lambda_{vis(}\mu m$ <0.7 or 0.8 < λ / λ_{max} < 1.4

So % visible energy is

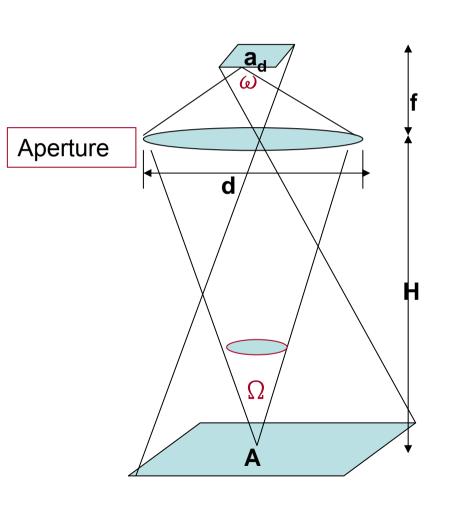
Homework(1)

- At the Daper point (800K), a blackbody begins to be visible, computer the visible exitance
- A 1-cm thick,1m square plate has one side perpendicular to the sun and a conductivity of 0.01 W/m/K. If the emissivities of both surfaces are all 1/5.67, and the shodow side of the surface temperature is 300K, compute the solar absorptivity of the surface facing the Sun
- Prove the blackbody equation can be normalized as M $_{\lambda}$ / M $_{\lambda \, , \, \rm max}$ vs. λ / λ $_{\rm max}$
- Compute the percentage increase in visible energy for a 3000K blackbody to 3400K (incandescent tungsten to halogen)

IFOV and Solid Angles



Radiometry Identity $a_d \omega = A \Omega$



$$\frac{\mathbf{a}_{\mathrm{d}}}{\mathbf{f}^2} = \frac{A}{H^2}$$

Multiplying both sides by $\pi d^2/4$ yields

$$\frac{\pi d^2}{4} \frac{a_d}{f^2} = \frac{\pi d^2}{4} \frac{A}{H^2}$$

Since $\omega = \pi d^2/4f^2$ and $\Omega = pd^2/4f^2$ Thus

$$\mathbf{a_d} \omega = \mathbf{A} \Omega$$

Optical Power on a Detector

The Optical Power Falling on a Detector is:

P[W]

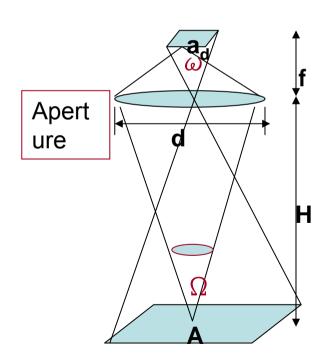
=
$$T_{opt}$$
 · L[W Sr⁻¹ m² μ m] · Ω A · Δ λ

Substituting the Radiometry Identity yields:

$$=T_{opt} \cdot L \cdot \omega a_{det} \cdot \Delta \lambda$$

$$= \mathsf{T}_{\mathsf{opt}} \cdot \mathsf{L} \cdot \left| \frac{\pi}{4 \bullet (F / \#)^2} \right| \mathsf{a}_{\mathsf{det}} \cdot \Delta \lambda$$

$$\varpi = \frac{\pi d^2}{4f^2} = \frac{\pi}{4(f/d)^2} = \frac{\pi}{4 \bullet (F/\#)^2}$$



Detector Responsivity

 An Ideal Detector Generates one e- for every Photon absorbed:

$$R_{ideal} = \frac{q}{h \nu} = \frac{q \lambda}{hc} \approx 0.8 \bullet \lambda [A/W]$$

An Actual Detector Responsivity is:

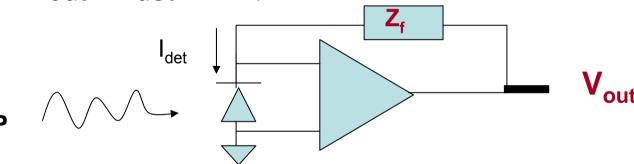
$$R[A/W] = \eta R_{ideal} = 0.8 \eta \lambda$$

q=1.6x10⁻¹⁹ Amp-sec

Note: λ in μ m

Theoretical Detector Output (TIA)

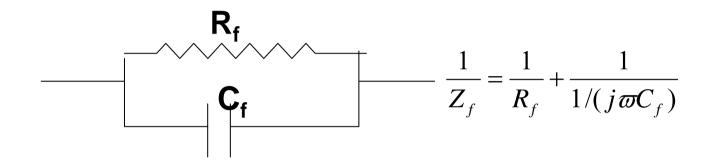
•
$$V_{out} = I_{det} \cdot Z_f$$



Theoretical Detector Output (CTIA)

$$V_{out} = \frac{I_{\text{det}} \bullet \tau_{\text{int}}}{V_{\text{out}}}$$

TIA Impedance Transfer Function



The Complex Impedance is

$$Z_f = \frac{R_f - j \varpi R_f^2 C_f}{1 + \varpi^2 R_f^2 C_f^2}$$

The Transfer Function is:

$$\left[\mathbf{Z_f}\right] = \frac{R_f}{\sqrt{1 + \varpi^2 R_f^2 C_f}}$$

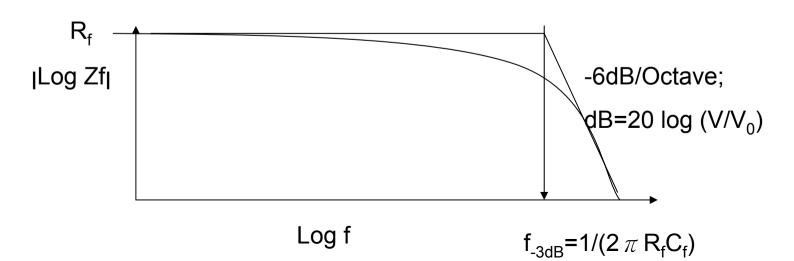
When ω =1/RC

$$|Z_f| = Rf/\sqrt{2}$$

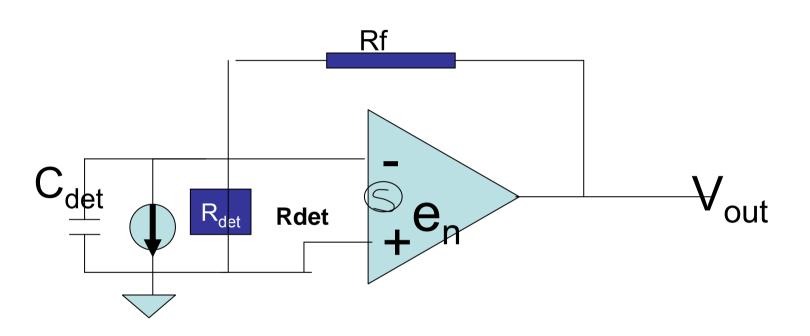
Frequency Response of Z_f

Since $\omega = 2 \pi f$, and $f_{3db} = 1/(2 \pi R_f C_f)$ $|Z_f| = Rf/\sqrt{2} = 0.707 R_f$ @ $f_{-3dB} = 1/(2 \pi R_f C_f)$ dB=20 log (0.707)= -3 dB

$$\left[\mathbf{Z_f}\right] = \frac{R_f}{\sqrt{1 + \boldsymbol{\varpi}^2 R_f^2 C_f}}$$



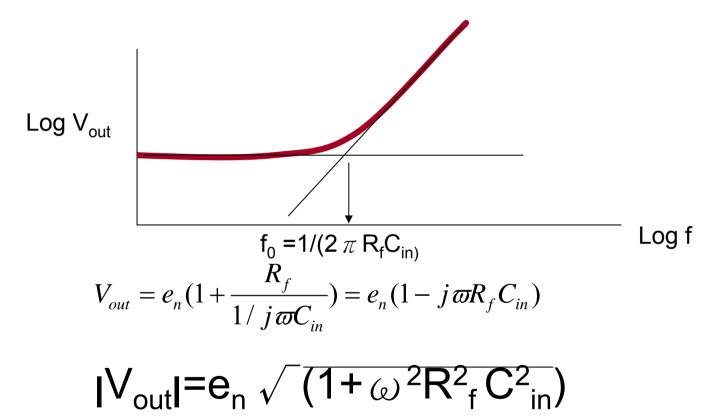
Why is that Detector Impedance needs to be High



If
$$R_{det} >> R_f$$

$$V_{out} = e_n (1 + \frac{R_f}{R_{det}}) \approx e_n$$

"Boosted Input Noise from Cin"



When
$$f_0=1/(2\pi RC)$$

 $|V_{out}|=\sqrt{2}$ en

Chopping is Essential for "Drifting Signal"

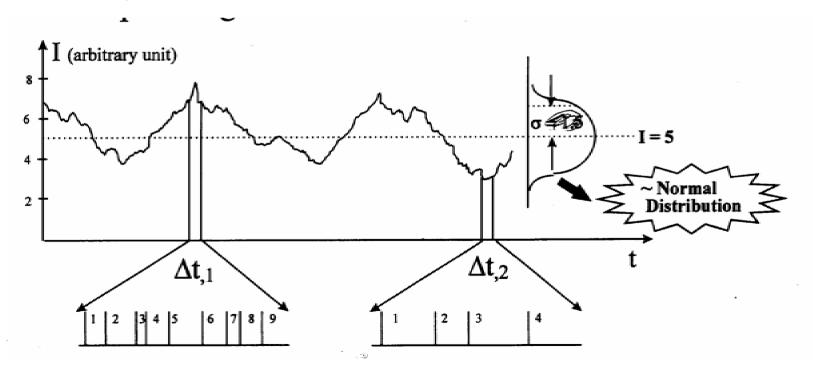
 Chopping Effectively "De-couples" the Slow Drifting "1/f" Noise (including D.C. Level)

 In CCD, A "Correlated Double Sampling" is Used to Eliminate Drif

Poisson and Gaussian

The arrival of Photons follows discrete Poisson process; when large number of photons arrive, the distribution pattern is a continuous Gaussian distribution.

Thermally generated electron-hole pairs (Dark current) generation essentially follows the same principle.



Shot Noise Current Density (Photon Noise)

Photon arrival is a "Poisson Distribution".=N^ke-N/k!; k=0,1,2,3 (photon arrival sequence). If N is the average no. of photons, then the variance of a Poisson distribution is the same as the mean **N**.

$$I = \overline{i} = Nq/\Delta t$$

$$\overline{i_n^2} = \overline{(i-I)^2} = (q/\Delta t)^2 \overline{(n-N)^2} = (q/\Delta t)^2 \bullet N$$

$$Shot_Noise$$

$$\overline{i_n^2} = qI/\Delta t = 2 \bullet q \bullet I \bullet \Delta f$$

Shot Current Noise is thus: $[2qI]^{1/2} / \sqrt{\Delta f}$

So Shot Noise Output Voltage in a TIA circuit is:

e _{shot}=[2 q I
$$\Delta$$
f]^{1/2} R_f

An ideal IT system is a Background Limited Infrared Photodetector (BLIP) system.

Nyquist Frequency

 The minimum Digitization interval needed to represent a periodical signal is ½ of its maximum frequency, or

$$\Delta t = 1/(2 f_{max})$$

So the noise bandwidth Δf is defined as:

$$\Delta f = 1/(2\Delta t)$$

Total Noise e_{n,total}

$$\begin{split} & e^2{}_{n,total} = e^2{}_{det} + e^2{}_{dark} + e^2{}_{amp} + e^2{}_{Rf} + e^2{}_{photon} \\ & Or \\ & e_{n,total} = \{e^2{}_{det} + e^2{}_{dark} + e^2{}_{amp} + e^2{}_{Rf} + e^2{}_{photon}\}^{1/2} \\ & e^2{}_{det} = \int_{\Delta f} k f^{-\alpha} \, df \\ & e^2{}_{dark} = 2q I_{dark} R_f \Delta f \\ & e^2{}_{amp} = \int_{\Delta f} [e_{input} \, (1 + \omega)^2 R_f^2 \, C^2{}_{in})] \, df \end{split}$$

$$e^{2}_{Rf}$$
=4kR_fT Δf
 e^{2}_{photon} =2qI_{photon} R_f Δf

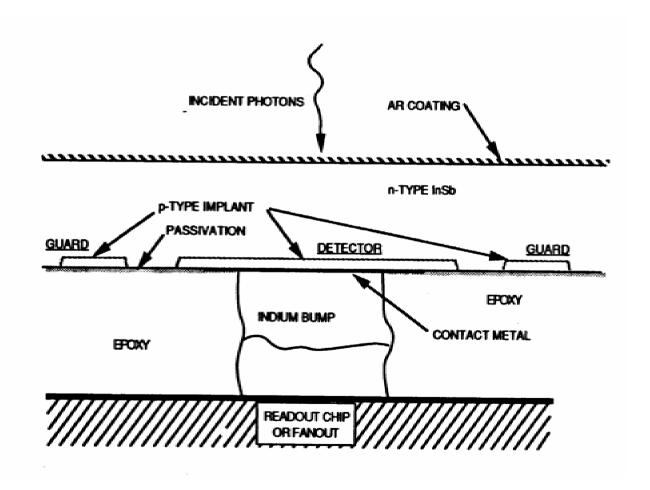
Two ways to Present "noises"

- 1. Input Referred: Noise current
- 2. Output Referred: Noise voltage

NEP, D, and D*

- NEP=I noise/Resp [W]
- D=1/NEP [w⁻¹]
- D*=(a $_{det}$ Δf) D [cm \sqrt{Hz} W⁻¹]

Planar Back-side Illuminated InSb SCA (System Chip Assembly)



Homework (II)

System Parameters:

```
A_{det}: 125 μm<sup>x</sup> 125 μm InSb PV;Q_{sig}:10<sup>16</sup> Ph/cm<sup>2</sup> @ 5.5 μm, @ 77K η=0.85; unit area dark current I <sub>dark</sub>: 8x10 <sup>-5</sup> A/cm<sup>2</sup>; C_{in}=8pF R_f=10M\Omega; C_f=2pF; e_{n,input}=6 nV/\sqrt{}Hz
```

Physical Parameters:

```
h: 6.63x 10<sup>-34</sup>W-sec<sup>2</sup>; c=3x10<sup>8</sup> m/sec; q: 1.6x10<sup>-19</sup> A/sec; k:1.38 x10<sup>-23</sup> W-sec/K
```

Find

- 1 the "break frequency f_{-3dB} " of the feedback circuit, and use f_{-3dB} for Δf
- 2a. Johnson noise voltage density; 2b: total Johnson noise voltage
- 3a. Total photon power falling on the detector 3b:detector responsibility
- 4a Photon Current, 4b: Signal voltage
- 5a. Photon Noise current density; 5b: total photon noise voltage
- 6a. Dark current; 6b: Dark current noise density 6c: dark current noise voltage
- 7a. Boosted noise voltage density; 7b: total boosted input noise voltage
- 8a. Total output-output referred noise voltage; 8b: SNR
- 9a: NEP; 9b:D; 9c: system D*

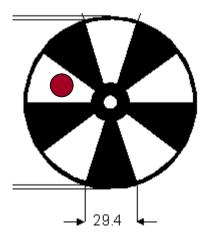
The Concept of Signal Chopping

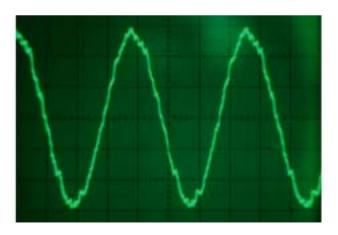
 An Ideal way to "decouple" the 1/F noise is the use of a Sine Wave Chopper

That Generates Singular Frequency (Lock-In))

"1/F"
noise

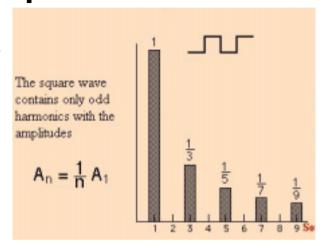
noise

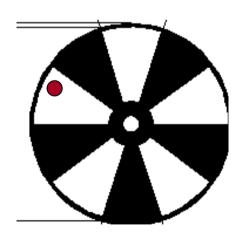


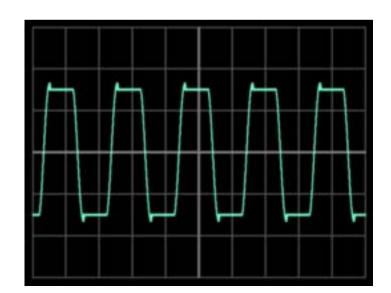


If the Aperture >> Beam Size You Have Square Waves

 So we May Still Utilize the "Fundamental Frequency" for Signal Comparison



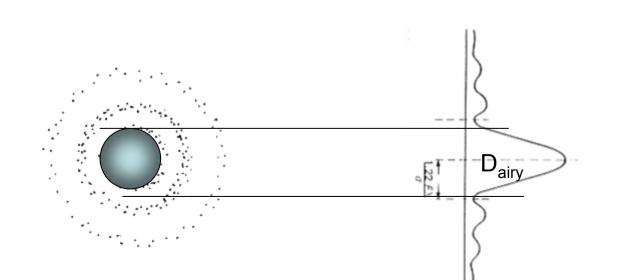




Airy Disc: Diffraction Limited Spot

 D_{airy} =2.44 λ (F/#)

F/*: F-Stop of an Optical System=f.I./ $D_{aperture}$ Since Numerical Aperture NA= $D_{aperture}$ /(2 • f.I.)=1/(2F/#) So D_{airv} =1.22 • λ • NA



How Many Pixels Do we need on a Digital Cameral? The More the Better?

- Suppose a CCD Chip is 1000x1000, with each pixel dimensions of 7μm x 7μm
- The F/*=3.0;
- at 0.7 μm, the Airy disc is
- $2.44x\ 0.7x\ 3=5\mu m$

- When $\lambda = 10 \mu m$, then the Airy disc=73 $\mu m!$
- In IR cameras, the pixels are "coarser".

Rayleigh's Spatial Resolution

The Resolution is Half of the Spot

Optical MTF

An Optical MTF is the Fourier Transform of its "Optical Spot". If the system is Diffraction limited then its Optical MTF Can be approximated by:

MTF _{optical} = $(2/\pi)$ (ϕ -Cos ϕ sin ϕ)

Where ϕ =Cos⁻¹(λ f/2NA) because the "blur circle is wavelength dependent

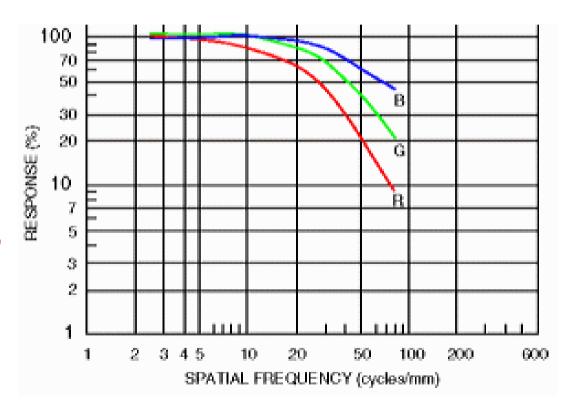
f: spatial frequency in "line pairs/ mm"

Practical Optical MTF Approximation

Most film MTF curves can be closely approximated by a Lorentzian function

MTF
$$(f) = 1/(1+(f/f_{50})2)$$

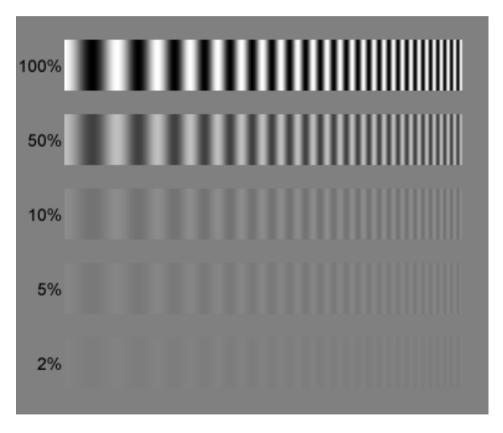
Where the "Nyquist MTF" f₅₀ is wavelength dependent



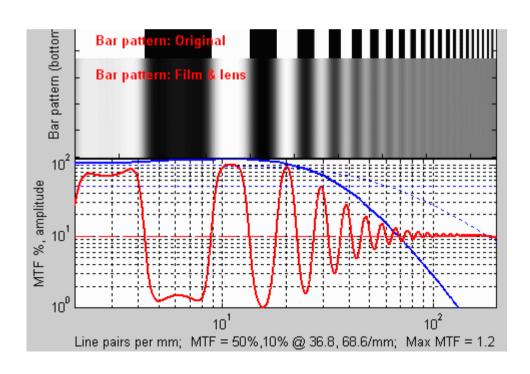
http://www.normankoren.com/Tutorials/MTF1A.html

MTF Examples-1

MTF for a "Pure Tone": sine function

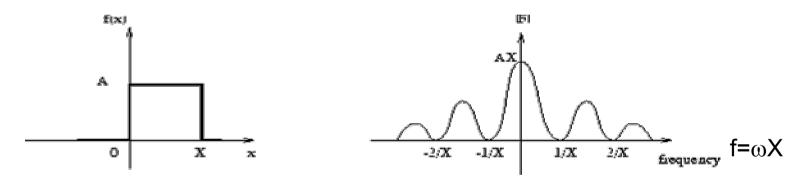


MTF Example-2



Detector MTF:Sinc Function

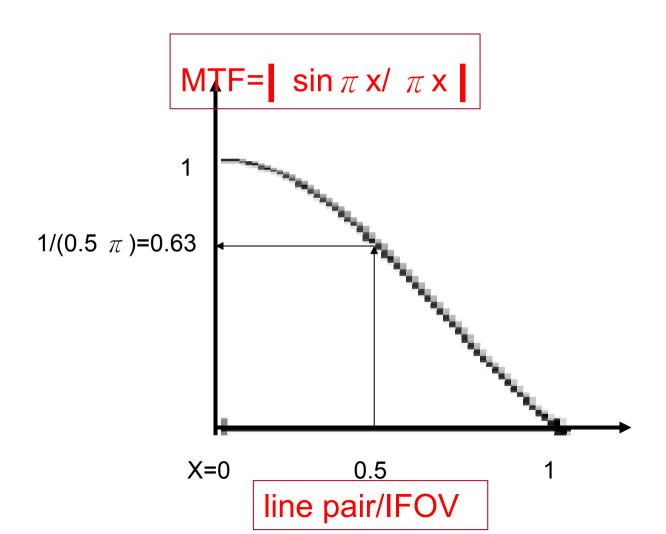
 Convolution of A Square Detector's and a Sine Scene is Detector's MTF



$$MTF = AX \frac{\sin(\pi \omega X)}{\pi \omega X}$$

X: I "IFOV"

Sinc Function: sinc $x=(\sin \pi x)/\pi x$



Physical Meaning of a Detector MTF

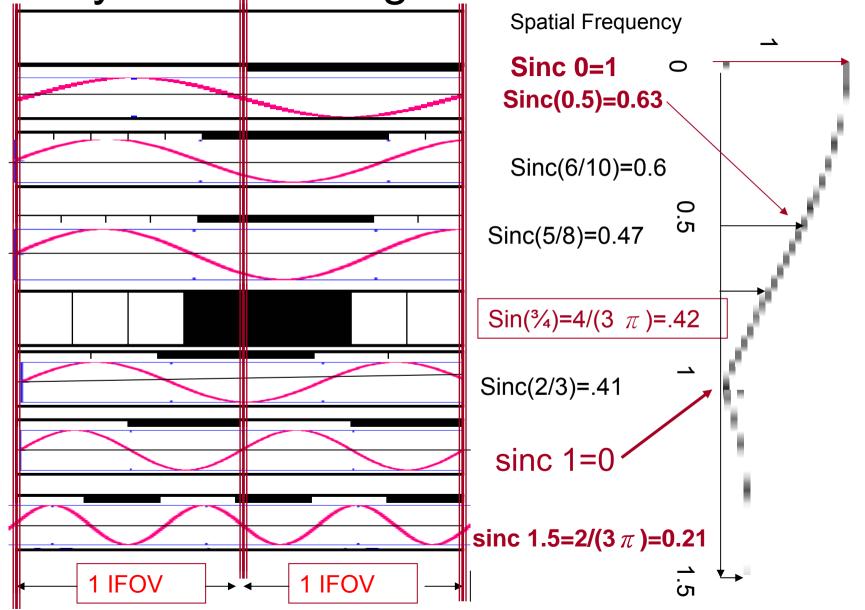


Image Convolution

Convolution of f(x) and h(x)

$$f(x) * h(x) = \int_{-\infty}^{\infty} f(u)h(x - u)du$$

Then Total MTF= MTF(f) • MTF(h)

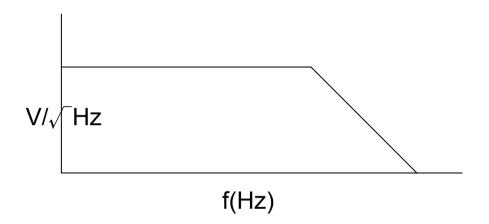
Since Both Optical MTF and Detector MTF never exceed unity, the total MTF is smaller than either MTF, Or,

MTF only degrades as the system gets more comlicated!

Total MTF

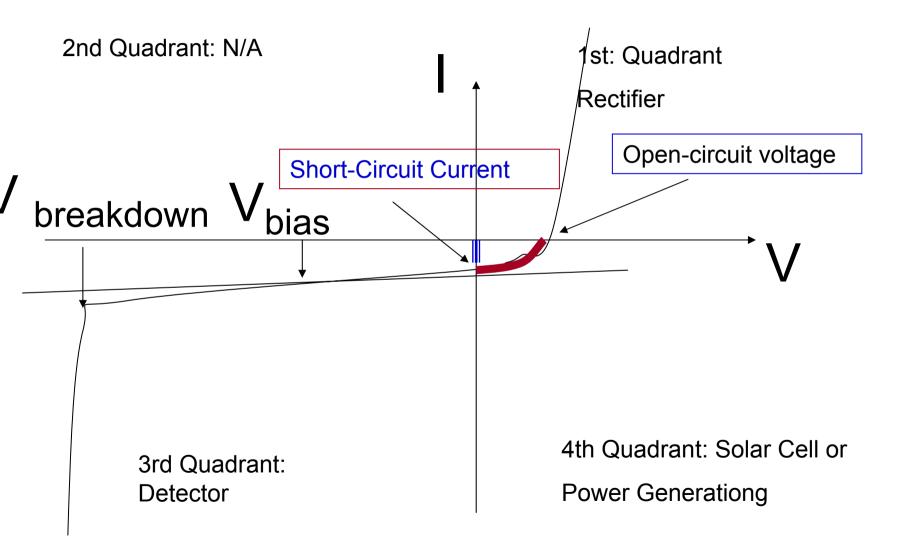
- The Total MTF is the Product of:
- MTF_{total}= MTF_{optical} MTF_{det}
- (If scanning is involved, another MTF electronics would be included as well)
- In the Actual Imaging Space, it means
- "Convolution" of both Optical Blur and the Detector with a Pure Tone Sine wave

Noise Density

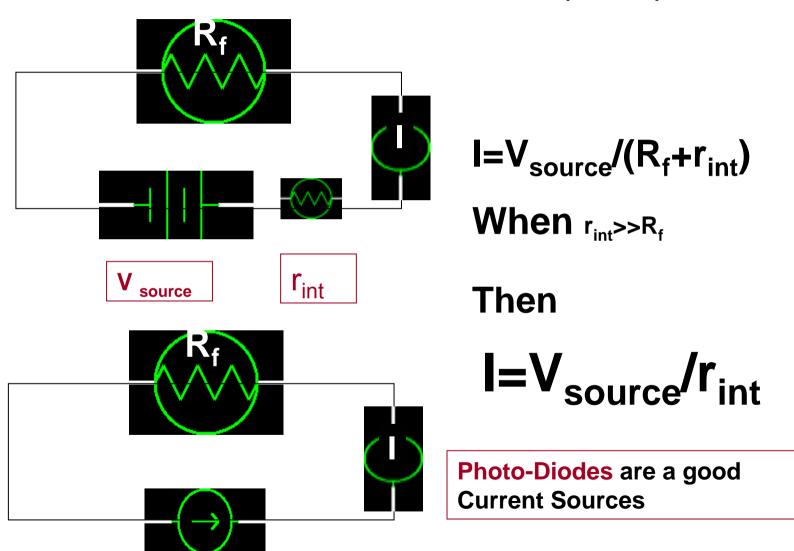


$$r.m.s.noise = \sqrt{\frac{\int_{\Delta f} v^2 df}{\Delta f}}$$

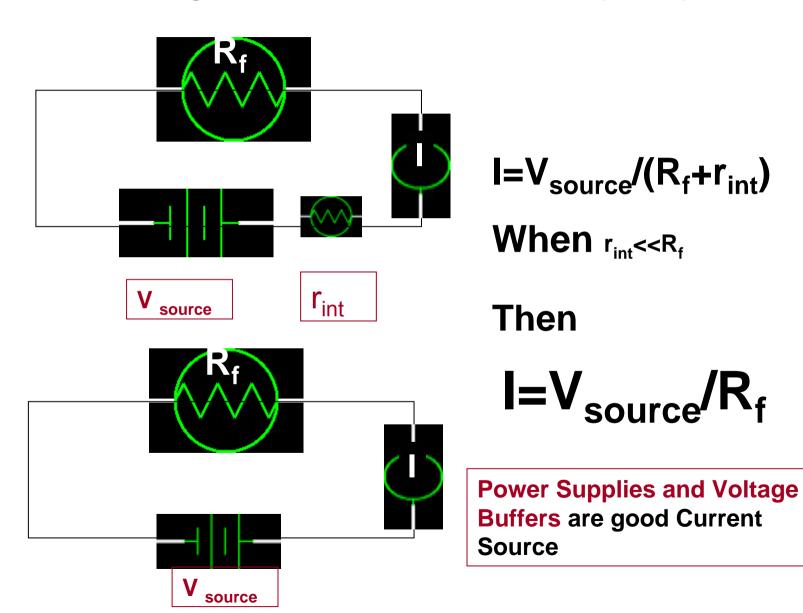
An Ideal Diode Curve



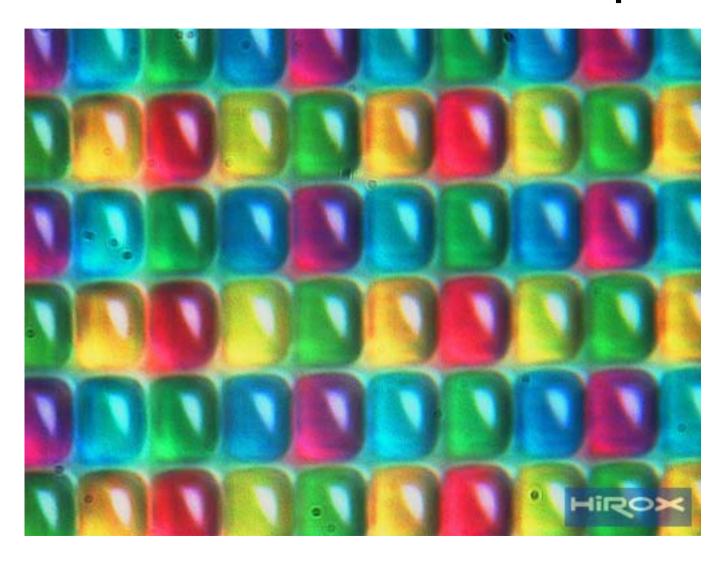
An Ideal Current Source has "Infinite Output Impedance"



An Ideal Voltage Source has "Infinitesimal Output Impedance"

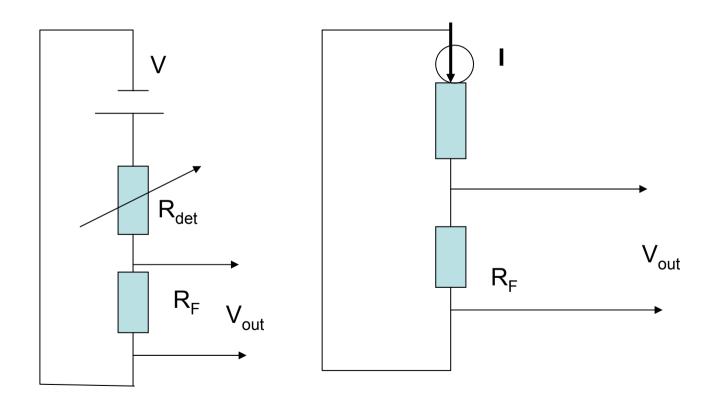


Video CCD Close-up

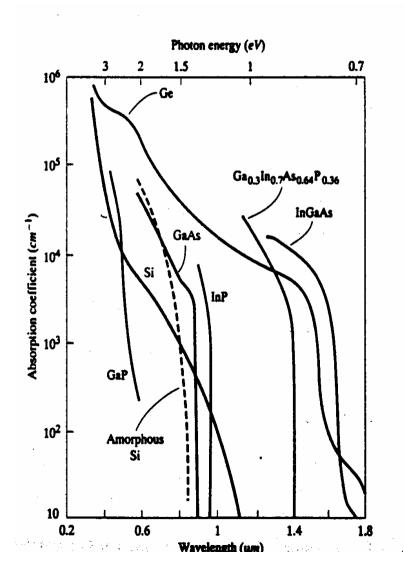


Simple PC Detector Biasing

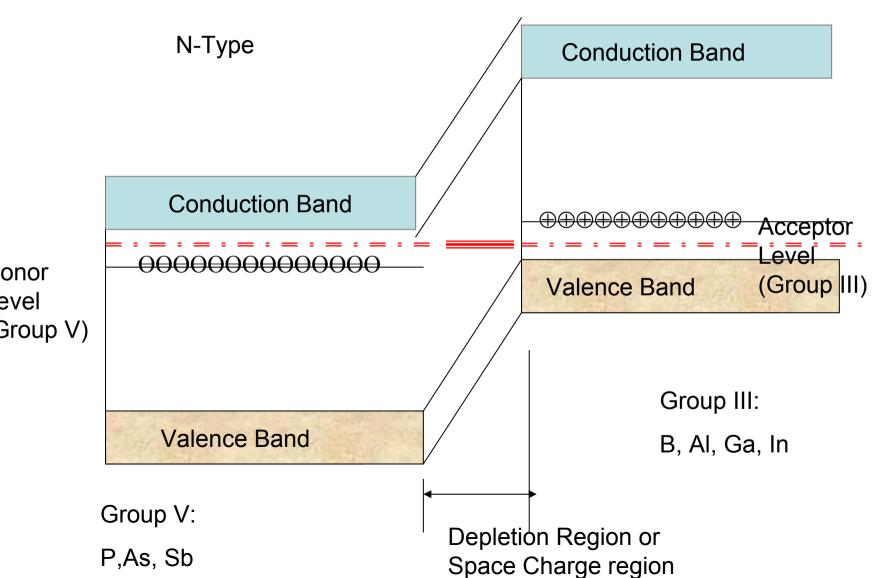
Voltage Biasing



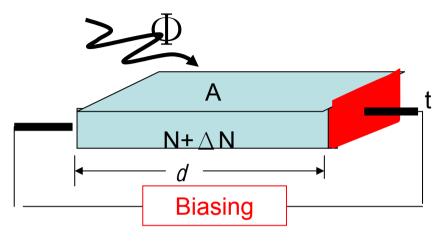
Absorption Coefficients vs. λ



Semi-Conductor P and N types



PC Detector Principle



 τ_{l} =carrier life

Photon-induced Charges $\Delta N = \eta \cdot \Phi \tau_L / (A \cdot t)$

Conductivity $\Delta \sigma = q \cdot \Delta N \cdot (\mu_e + \mu_h) \sim \Delta N \sim \Phi$

$$R_{det} = 1/(\sigma \cdot A)$$

$$\Delta R_{det} = -1/(\sigma^2 \cdot A) \cdot \Delta \sigma = -(R_{det}/\sigma) \cdot \Delta \sigma \sim \Phi$$

$$R_{PC}(A/W) = \eta (q/h \nu)G$$

PC Detector Responsibility

RPC(A/W)=
$$\eta$$
 (q/h ν)G=0.8 η • λ • G

G: photo-conductive gain = $\tau \cdot \mu \cdot E/d$

Where
$$\mu$$
= (μ_e + μ_h)

d=inter-electrode spacing

G can be greater than unity; a blessing and a curse!

PV Detector Principle

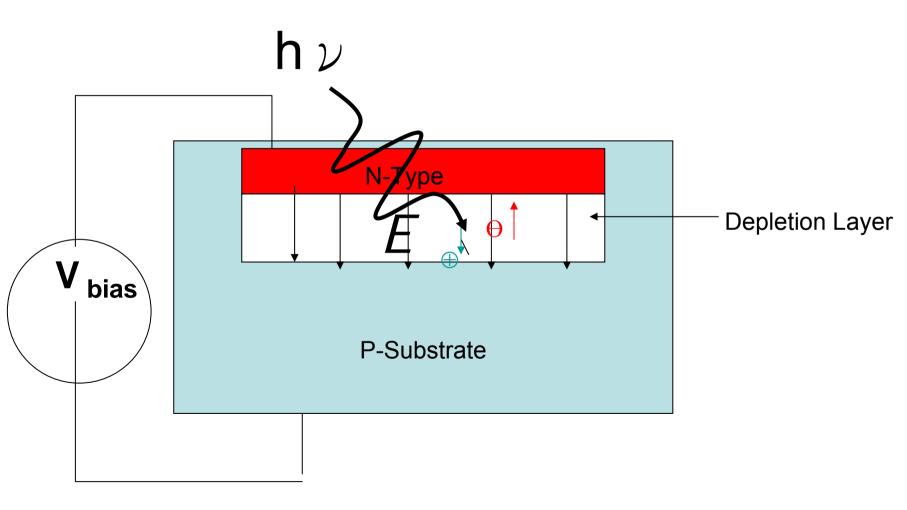
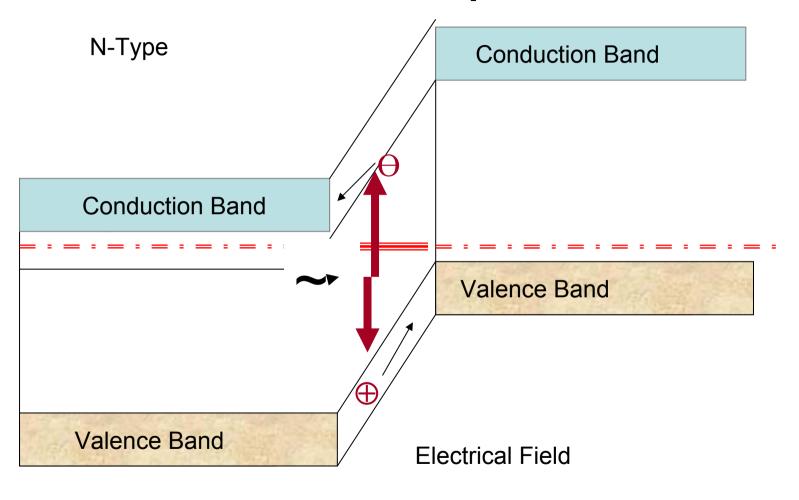
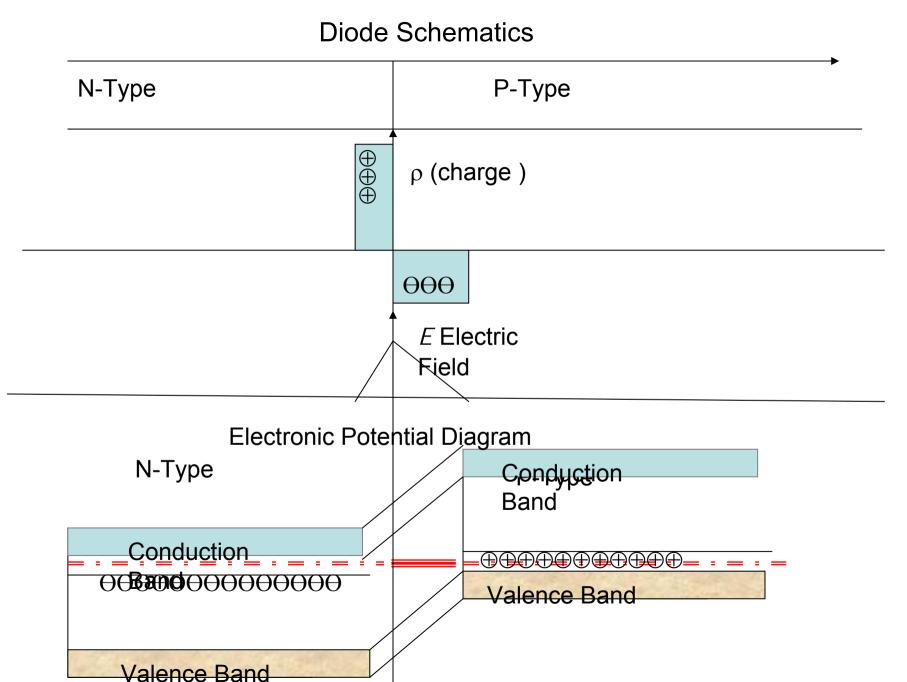
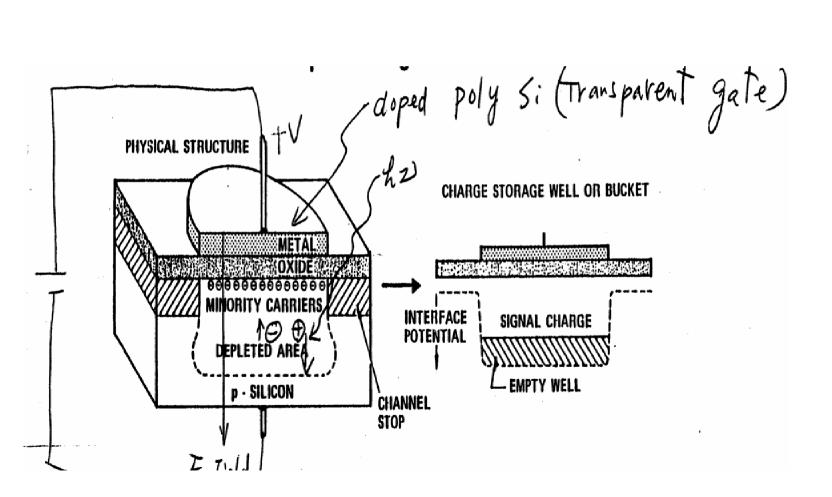


Photo-Voltaic Operation

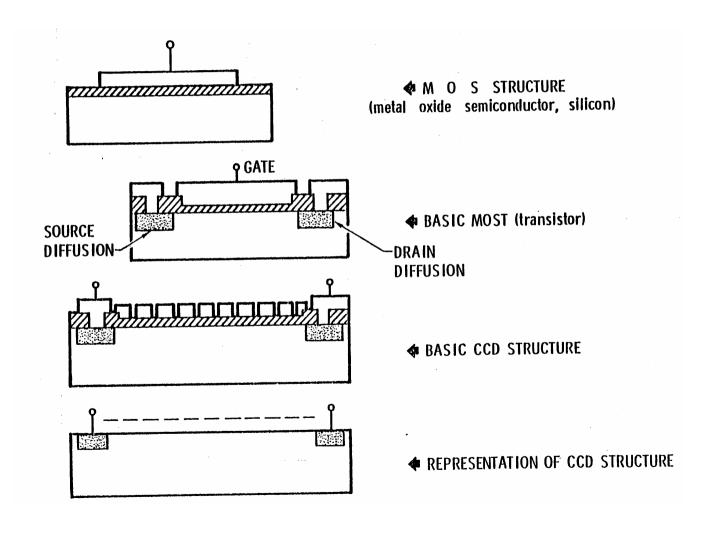




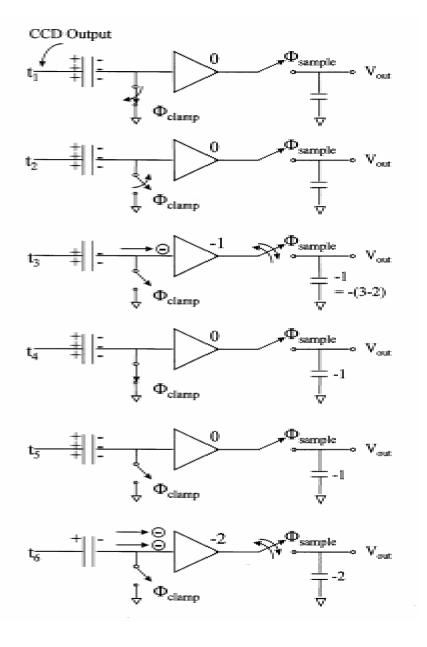
CCD Storage "Well"



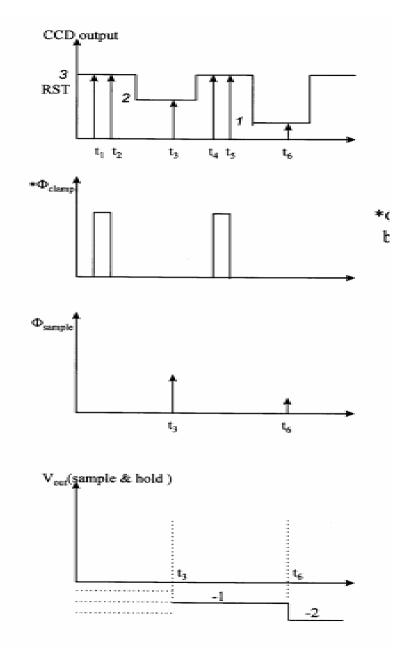
MOS and CCD Representations



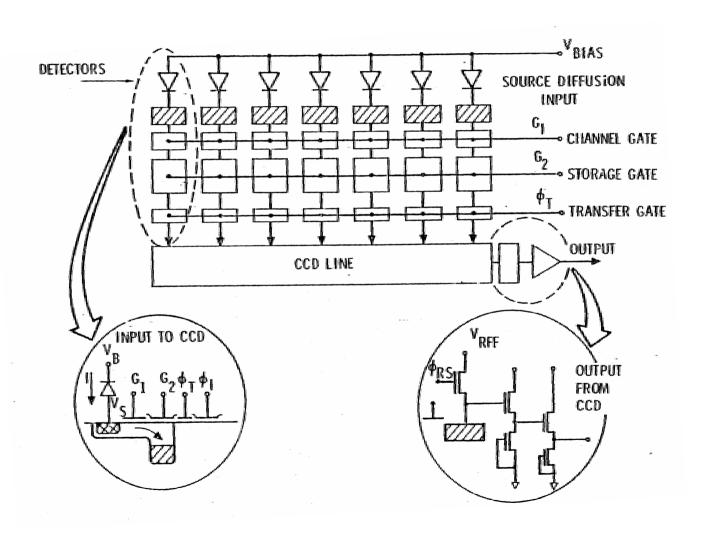
Correlated Double Sampling Sequence



Sample and Hold Timing Diagram



Linear CCD Array



Homework 3

- An IR system has an optical blur function of exp(-ax/2), where a=125 μ m, and the detector dimension of 200 μ m square.
- 1. Plot both blur functions and the convolution function
- Compute and plot the system MTF. What is the Nyquist MTF?

Hint: MTF of exp(-ax/2) is $[1+(af/f_0)^2]^{-1/2}$