Thermal Infrared Systems Lecturer: B T Yang 楊丙邨 March 2005 NTU

Lecture Outline

- 1. Phenomenology: "What is"
- 2. Optics
- 3. IR Detectors: Thermal, PC, PV
- 4. IR Detector Circuitry and Noises
- 5. IR Systems and Applications

Typical IR System

IR is Never Complete without Introducing the "Blackbody"

"Black" means No Light is Reflected, but "Light" can be emitted!

Grooved Planar Black Body Source

• "Grooved surface enhancing the emissivity

Definition of a Black Body

- A blackbody absorbs all incident radiation; r=0
- At a given temperature, no surface can emit more energy than a blackbody
- A blackbody is a "diffuse" emitter that follows the "Lambertian Laws"

Lambertian Law

• Specular Surface (reflective)

• Lambertian Surface (diffuse surface)

The beginning of Infrared Infra= Ln. below

 In 1800, Sir William Herschel, using a prism to spread sunlight, observed the heating "beyond the red end" of the visible light spectrum

IR: Heat?

- A known effect of infrared light on skin is dilation of blood vessels that transport blood to and from the skin for cooling=> sensation of heat!
- According to Kirchhoff Law, if r=0

 $\mathcal{E}(absorptivity) = \sigma(emissivity)$

Since skin is a good IR emitter then it must be a good IR absorber!

Light: An Electromagnetic wave

The Electromagnetic Spectrum

IR Frequency and Energy

- Frequencies: $.003x10^{14}$ to 4×10^{14} Hz
- Wavelengths: 1 mm 0.7 μ m
- Quantum energies: 0.0012 1.65 eV

Planck's Equation

- M_{λ} : Spectral Exitance [W·CM⁻² · μ m⁻¹]
- λ : wavelength [μ m]
- T: absolute temperature [K]
- h= Planck's constant =6.63x10⁻³⁴ W sec²
- C= $3x10^{14} \mu$ m /sec

Spectral exitance of a blackbody

Wien's Law

Stefan-Boltzmann's Equation of Radiation

- $M(T) = \int M_{\lambda}(\lambda, T) d\lambda = \sigma T^4 [W \cdot cm^{-2}]$
- M(T): Exitance (not Spectral Exitance)
- σ : Stefan-Boltzmann's constant 5.67x10⁻¹² W · cm⁻² · K⁻⁴

Grey Body?

- When emissivity $\boldsymbol{\epsilon}$ is not unity
- Most physical surfaces are grey bodies
 - ϵ_{skin} ~ 0.95, then it must be "Approximated as a Blackbody
 - $M_{\lambda} = \varepsilon M_{\lambda}$ $M = \varepsilon \sigma T^{4}$

Atmospheric Transmission Spectra

Infrared Interactions

http://hyperphysics.phy-astr.gsu.edu/hbase/mod3.html#c3

• . The result of infrared absorption is heating of the tissue since it increases molecular vibrational activity..

Discrete Energy State

• Planck's 1900's "lucky Guess" $\Delta E = h_V$

Photo-Electric Effect

• Eienstein 1905's Paper Confirming the Discret Energy

Visible Spectral Range

• Visible Band: 400nm to 700nm

Eye's Cones' (3) and Rods' Responses

- Rods for night vision (more sensitive)
- Cones for color day vision

Night Goggles are "not" true Thermal Images

• Night Goggle Images are "Reflected NIR Images", not "Emitted Thermal images"

Many Low-Cost Low-Light Detection Systems are NIR Systems

"Near IR Wavelength Used for Optical Communications

"Single mode fiber" single path through the fiber

Spectral Attenuation (typical fiber):

Human Thermal Images

 http://www.ir55.com/infrared_IR_camera.h tml

PC Board Localized Heating

Localized IC Chip Detection

Burglar Detection

Underside Celeron Chip

SARS Temperature Screening

Preventive Maintenance

• Electrical Fuse Thermal Image

Thermal Management

Defense Applications

Sky Surveillance

Collision Prevention

Weather Monitoring

Geosynchronous Weather Satellite Application

What "Limits" Your Measurements?

1. Spatial (How Small an Area Can the System Resolved?):

Optics

- 2. Temporal (How Fast Can the System Do?): Detector and Electronics Responses
- 3. Resolution of the System (What is the Samllest Temperature the System can resolve?):

NEP

Solid Angle Concept

object (A)

Radiance L

 Radiance is Defined as the Power per Unit Area per Steradian(Sr)

 $L[W m^{-2} Sr^{-1}]=M(T)/\pi$

Solar Constant K_{solar}(Example)

- Solar disk "subtends" 1/2°(or 9 mRadian) in view, the solar constant is the total Radiance Power per unit area
- Since the Radiance is
 L=1/πM(6000K)=(σ/π)x6000⁴=2.34x10⁷W · m⁻² Sr⁻¹
- The solid angle of the sun is
- Ω=(π/4)(0.009/2)²~6.4x10⁻⁵ Sr
- The Solar Constant is then:
- $K_{solar} = L \cdot \Omega \sim 1.5 \text{ KW/M}^2$
- σ : Stefan-Boltzmann's constant 5.67x10⁻⁸ W · m-2 · K⁻⁴

Equilibrium Temperature Concept

- The Total Power Absorbed by a 1M² Plate Perpendicular to Sun Rays is a Solar Constant K_{solar} of 1.5KW
- The Radiated Power is
- The Equilibrium Thermodynamic Condition Stipulates:
- $\sigma T_{plate}^{4} = K_{solar}$
- $T_{plate} = (1500/\sigma)^{1/4} \sim 403 K = 130^{\circ} C$

How to Manipulate the Equilibrium Temperature T_{equi}

- By varying Surfaces Solar Absorption Coefficient $\alpha and \ \epsilon$
- For α of 0.2 and ϵ of 0.9, T_{equi}~277K=>4°C!
- $\alpha K_{solar} = \epsilon \sigma T_{plate}^{4}$

$$T_{equi} = \sqrt[4]{\frac{\alpha K_{solar}}{\mathcal{E}\sigma}}$$

•For α of 0.2 and ε of 0.9, T_{equi}~277K=>4°C!

Why is a Metal Surafce so Warm in the Sun?

Polished Metal Surfaces have low α and ϵ Assume $\alpha = \epsilon = 0.2$

$$T_{equi} = \sqrt[4]{\frac{\alpha K_{solar}}{\varepsilon \sigma}} = \sqrt[4]{\frac{0.2X1500}{0.2X5.67X10}} = 403K!$$

• σ : Stefan-Boltzmann's constant 5.67x10⁻⁸ W · m-2 · K⁻⁴

Does "Absolute Temperature" Have to Do with Heat Transfer?

- Conduction
- $\Delta Q \sim \Delta T$
- Convection
- Δ**Q~** ΔT ^{n;} n≠1
- Radiation
- $\Delta Q \sim \Delta (T_1^4 T_2^4)$

Radiative Heat Transfer is the Only Form of Heat Transfer that requires Absolute Temperature instead of Temperature Difference

Scattering of Sunlight by the Earth-Atmosphere-Surface System

Atmospheric Transmission and Greenhouse Effects

http://tbrs.arizona.edu/education/553-2004/2004/Lect083104_Ch2.ppt-link.ppt#21

BK-7 Transmission Curve

- Most Plate Glass, Similar to BK7
- Plate Glass is Opaque to LWIR

Why is the Interior of a Car so Warm in the Sun?

 Sun(6000K) warms a car with all wavelengths, but the interior of the car (300K-400K) emits IR that can not pass through the glass.

So How Does a Space Suit Work in the Sun?

• By a "Secondary Mirror" Surface!

Metallic Surface to reflect Most the Visible Lights

Si and Ge IR Transmissions

ZnSe Transmission

http://www.almazoptics.com/ZnSe.html

Regardless the "skin tone" difference, all men are equal in Infrared

• Yes, about 0.98; almost black!

What is an Aural Thermometer", or Infrared Aural sensor

- Tympanic cavity as a blackbody cavity
- Emissivity~1.00
- Readily calibrated
- **Must be in a cavity!!

The Infamous SAR Fighter: Ear Cavity Thermometer

- a clinically reliable indicator of body core temperature
- Pyro-Electric
 Transducer

Electron Thermal Energy: Why IR Detectors Must be Cooled!

$$\mathbf{K}\mathbf{E}_{avg} = \begin{bmatrix} \mathbf{\overline{1}} \mathbf{m}v^2 \\ \mathbf{2} \end{bmatrix} = \frac{\mathbf{3}}{2} \mathbf{k}\mathbf{T}$$

kinetic energy

NEP Concept

- If we use the entire spectrum, then to detect 38°C (vs. 37 °C), the difference is [(38 +273)/(37 + 273)]⁴ = 1.013%
- So to resolve 1°C the "system" must be able to resolve 1.3% difference
- =>Noise Equivalent Power or NEP

How good is my System Stacking Against the Others?

D*

Pyro-electric Detectors

- Pyro: Gk "Fire"
- Pyro-electric: electrical output caused by heat
- Sometimes used for "fiery sparks" display for stage effects
- Low sensitivity, low cost
- Usually for intrusion detection only

Pyro-electric Detector polyethylene Fresnel lens are typically used for their low costs

TGS (Tri-glicine-sulfate)

http://www.fuji-piezo.com/TechGen.htm

$PV Hg_xC_{1-x}Te$

- Short for "photo-voltaic Mer-Cad-Telluride",,or, "Mer-Cad"
- Chemical compound of HgTe and CaTe
- Response ranging from 1µm to 5.5µm, and 8µm up to 13µm, depending on the Hg to Cd ratio
- Most versatile IR detector

PC HgCTe

- Response to 18 microns
- Need "chopping"
- Response varying with temperature
- Operative in higher temperature than PV

Thermal Transducer is "Export Control" Items

 InSb, HgCdTe, and room-temperature Thermal-pile Focal Plane Arrays (FPA) are all "Strategically sensitive" items