

Thermal Design of Liquid Cooling System for Electronic Cooling

王啟川 Chi-Chuan Wang, PhD, Senior Researcher

工研院能資所熱流技術組

E-mail: ccwang@itri.org.tw

Acknowledgements

- Financial supports provided by the <u>Department</u> of Industrial Technology, Ministry of Economic Affairs, R.O.C.
- Technical Supports from Mr. <u>R.T. Huang</u>, and Mr. <u>J.D. Huang</u>, Miss <u>CoCo HSu</u>, Mr. <u>M.C. Lu</u>, Dr. <u>K.S. Yang</u>, Dr. <u>K.H. Chien</u>
- Advisory support from Dr. R.J. Shyu
- Major Collaboration Professors: <u>Shyu W.T.</u>

Outline

- Background
- Fundamentals of Augmentation
- Micro-channel HXs
- Liquid Cooling Maldistribution
- Liquid Cooling Radiators
- Summary

Limits of cooling technology

Richard. C. Chu - IBM

Limits of Air-cooled Design

Saini et al., 2002 Inter Socic!ty Conference on Thermal Phenomena

Water-cooled System

Fundamentals:

Heat Transfer Augmentation of Cold-Plate

- Heat Transfer Augmentation ($Q = UA \Delta T_m$)
 - Q : heat transfer rate,
 - U: overall heat transfer Coeff.
 - A: Area

& Resources Laboratories

- ΔT_m : mean temperature difference
 - Increase A
 - Increase U
 - ➤ Reduce △P at fixed Q

Fundamentals

• Why enhancement? Do you really need enhancement?

Do you really need enhancements? h: heat transfer coeff.

- A: area
- η : fin efficiency

How you can do about enhancement – Q is not the sole objective.

Some objectives for enhancements.

- Maintain Q and ΔP , reduce A
- Maintain Q and A, reduce effective temperature difference
- Increase Q subject to same A
- Maintain Q and A, reduce pumping power

Fundamentals:

Conduction $q = -kA \frac{dT}{dy}$

- Increase A
- > Use high k materials
- Increase temperature gradient? dT/dy = (T₂ - T₁)/(y₂ - y₁)
- Convection

$$q = hA(T_s - T_{\infty}) = -kA\frac{dT}{dv}\Big|_{y=0}$$

- Increase A
- Increase h (convective heat transfer coeff.)

Example of Increased A

Increase aspect ratio Limit to manufacturing \succ Mal-distribution is likely \geq Increase fin type D/W = 1Δ D/W = 2D/W = 4Ο 1/hA (°C/W) 0.1 0000 000000 0.01 0.1 0.01 10 Pumping power (mW)

Increased heat transfer coeff.

- Air cool to liquid cool, single-phase to two-phase
- Augmentation

TABLE 1.	l Typical values of the
conve	ction heat transfer coefficient

Process	$h (W/m^2 \cdot K)$
Free convection	
Gases	2–25
Liquids	50-1000
Forced convection	
Gases	25-250
Liquids	100-20,000
Convection with phase change	
Boiling or condensation	2500-100,000

Single phase flow pattern

$$q = hA(T_s - T_{\infty}) = -kA\frac{dT}{dy}\Big|_{y=0}$$

• $\text{Re}_{\text{D}} = \rho u D/\mu$

For smaller diameter tube (or micro tube) flow pattern is mostly operated at laminar flow

R $e_D < 2,300$ laminar flow

Augmentation of single-phase flow

- Attention the stand and the

SECTION A-A

ď

9

Augmentation in turbulent flow

Augmentation - with the presence of fins

- OSF interrupted surface
- Boundary layer restarting

d. Offset Strip Fin

b.Triangular

c.Wavy

f. Louvered

Water-cooled Micro-channel HXs Usually with micro-channels

Coolermaster: AQUAGATE Mini:

Hitachi Water Cooling Laptop (Prototype Model)

Micro-channel HXs - Examples

Micro-channel HXs - Examples

Does the heat/flow characteristics in micro channel behaves like macro channel?

- $\square \quad Nu_{D} (= hD/k)$
- For single-phase fluid in the range of 0.1 to 1.0 mm, heat transfer behaves just like macro-channels

Courtesy of Prof. C.Y. Yang, Department of Mechanical Engng., NCU

Apply the conventional Plate HX

Augmentation based on plate HXs

dimension: 50 mm x 50 mm x 2 mm

U - type

Chevron (V)

Courtesy of Prof. C.Y. Yang, Department of Mechanical Engng., NCU, cyyang@ncu.edu.tw

Temperature Distribution ...

Courtesy of Prof. C.Y. Yang, Department of Mechanical Engng., NCU, cyyang@ncu.edu.tw

A comparison of Thermal Resistance vs. pumping power

Courtesy of Prof. C.Y. Yang, Department of Mechanical Engng., NCU, cyyang@ncu.edu.tw

A comparison with some existing commercial products

Dimension: U, V: 50 x 50 x 2 mm³

Courtesy of Prof. C.Y. Yang, Department of Mechanical Engng., NCU, cyyang@ncu.edu.tw

Serpentine vs. multi-port design

Cold Plate

 $\Delta P = 4.9 \text{ kPa}$ Q = 47.94 W

3_5000E-002 3_290E-002 3_290E-002 3_290E-002 3_290E-002 3_290E-002 3_290E-002 3_280E-002 3_280E-002 3_280E-002 3_280E+002 3_280E+002 3_280E+002 3_280E+002

⊿P = 3.4 kPa Q = 48.72 W

 $\Delta P = 1.2 \text{ kPa}$ Q = 13.73 W

∆P = 2.17 *kPa Q*= 126.91 *W*

Multi-port HX

Effect of number of port (20, 40, 60)

Temperature distribution of Velocity profiles of $20(\Box)$, 40(O)**20 (□), 40 (O)and 60 (**∆**)** and 60(Δ) channels for Vin =1.0 m/s. channels cold-plates for Vin = 1.0 m/s.2.5 -20 Channels -D-20 Channels 42.4 40 Channels -0-40 Channels 2.0 60 Channels $-\Delta$ 60 Channels 42.2 42.0 1.5 V/V_{ave} O 41.8 1.0 41.6 ୢୄ୲ୄଡ଼ୄଡ଼ୄୖ 41.4 0.5 41.2 41.0 0.0 -0.00 0.03 0.01 0.02 0.04 0.05 0.06 0.00 0.02 0.03 0.04 0.05 0.06 0.01 X (m) X (m)

Influence of Guide Plate, Conti.

Effect of Guide Plate – R_{th}

工業技術研究院 能源與資源研究所 Industrial TechnologyResearch Institute Energy & Resources Laboratories Effect of Inlet locations

Lu and Wang, (2005)

Effect of Inlet locations, Conti..

Lu and Wang, (2005)

PIV Flow Visualization

: I Arrangement – Uniform Gap

EdgeRegic

PIV Flow Visualization

PIV Flow Visualization

PIV Flow Visualization

PIV Flow Visualization

Radiator – air-cooled HX

Copper Fin-and-tube HX

Aluminum Brazed Heat Exchanger

彎曲型百葉窗

空氣入口方向/

空氣入口方向

Various Fin Patterns Note: ERL has the biggest database for all kinds fin patterns Design software are available (please call, Mr. J.S. Liaw at 03-5914220; jsliaw@itri.org.tw)

工業技術研究院 Passive method to improve airside performances Energy & Resources Laboratories - Technology Evolution

- •Thermal Boundary Layer Restart
- •Instability
- •Thermal Wake Management
- •Swirl

Type of vortex generators

Longitudinal vortex outperforms the transverse vortex

Longitudinal vortex

Transverse vortex

Benefits of vortex generator

- Prevent Boundary Layer separation
- Improve heat transfer performance with acceptable pressure drop

Int. J. of Heat and Mass Transfer, Vol. 45, pp. 1933-1944. Int. J. of Heat and Mass Transfer, Vol. 45, pp. 3803-3815.

Int. J. of Heat and Mass Transfer, Vol. 45, pp. 1933-1944. Int. J. of Heat and Mass Transfer, Vol. 45, pp. 3803-3815.

Summary

- •Liquid Cooling is considered as an alternative for high-flux electronic cooling applications.
- •Heat Transfer augmentation is an effective way for laminar flow cold-plate
- •Mal-distribution could be a concern for multiple port channel cold-plate
- •Radiator is the final place to dump heat it is very crucial to choose suitable fin pattern

