Chapter 4 Pressure Measurement

Contents

- Introduction
- Absolute pressure, Gauge pressure & differential pressure
- Pressure calibration
- Examples of pressure transducers
- Pressure measurement in fluid mechanics

What is pressure?

- In mechanics, pressure is force per unit area, i.e., P = dF/dA (in a general sense, it is a type of compressive stress.)
- In hydraulics, pressure is specific weight times height , i.e., $\Delta P = \rho g \Delta h$.

(Pressure is a local flow property and is position-dependent)

- In kinetics, pressure is molecular kinetic energy per unit volume, i.e., P = 2 KE / 3 V
- In thermodynamics, pressure is the work per unit volume, i.e.,
 - $P = (\delta Work + \delta Loss) / dV$

Measurement and Simulation of Optomechatronic Systems

Phenomena observations

For fluid at rest,

- Pressure measurements are usually expressed in indirect means, e.g., a column of fluid.
- Pressure is the same in all directions at a given point
- Pressure is unaffected by the shape of the confining boundaries. (⇒a great variety of pressure transducers)
- Pressure is transferred undiminished throughout the confined fluid.

Units of pressure

- Commonly used units of pressure:
 - 1 Torr = 1 mmHg

1 Pa (*pascal*) = 1 N/m² = 10 dyne/cm² (=1.4504 x10⁻⁴ lb_f/in²)

- $1 \text{ psi} = 1 \text{ lb}_{\text{f}}/\text{in}^2$
- 1atm = 14.69595 psi = 760 Torr = 101,325 N/m²
 = 29.9213 in. Hg = 760 mmHg = 1.01325 bar
- 1 bar = 10⁵ Pa = 14.5053 psi
- $1 \text{ mmH}_2\text{O} = 9.80665 \text{ Pa}$

(standard atmosphere 1atm: 15°C, sea level)

Absolute & gauge pressure

There are customarily three ways to describe the pressure:

1.Absolute pressure:(P_{abs})

output pressure measured by an ideal vacuum pressure gauges.

2. Gauge Pressure :(P_g)

absolute pressure minus local atmospheric pressure

3. Differential Pressure :

absolute pressure minus any known pressure

Measurement and Simulation of Optomechatronic Systems

Pressure measuring instruments

Three major types of pressure measuring instruments:

- (a) manometer: low range,
- (b) dial gage: middle range,
- (c) electronic transducers: remote, automatic recording

Pender (1997)

Characteristic	Manometer	Dial gage	Electronic transducer
Pressure range	62 Pa-339 kPa	62 Pa-700 MPa	25 Pa-700 MPa
	$(0.25 \text{ in. } \text{H}_2\text{O}-100 \text{ in. } \text{Hg})$	(0.01 - 100,000 psi)	(0.004–100,000 psi)
Accuracy range	0.25 Pa (0.001 in. H ₂ O) to	0.066%–5% full scale	0.003%–3% full scale
	2% full scale		
Frequency response	< 10 Hz	< 10 Hz	DC to 1 MHz
Electronic output	No	No	Yes
Temperature range	-62°C to +66°C	-32°C to +54°C	–271°C to +400°C
Media compatibility	Gas	Gas or liquid	Gas or liquid
Cost (U.S.)	\$100-\$2000	\$10-\$3000	\$50-\$10,000

Measurement and Simulation of Optomechatronic Systems

Manometer

Pender (1997)

- Measuring range:
 62 Pa ~ 339kPa
- Accuracy: 0.025% ~ 2% of full scale
- Disadvantages: result is ρ and g-dependent, lack of recording and limited frequency response

Туре	Full scale range	Accuracy range
U-tube	500 Pa-339 kPa	0.25 Pa (0.001 in. H ₂ O)-
	(2 in. H ₂ O–100 in. Hg)	2% of full scale
Well	1 kPa-339 kPa	0.01% of full scale-2% of
	(4 in. H ₂ O–100 in. Hg)	full scale
Inclined	62 Pa-5 kPa	0.025% of full Scale-1% of
	$(0.25 \text{ in. } H_2O-20 \text{ in. } H_2O)$	full scale

Measurement and Simulation of Optomechatronic Systems

Micromanometer

- Measuring range: up to 20"H₂O
- Accuracy: 0.0005"
- Simple
- Disadvantages: sensing by eyes

Measurement and Simulation of Optomechatronic Systems

Manometer for remote use

Measurement and Simulation of Optomechatronic Systems

Range of pressure measurement

Deadweight gauge calibrator

Low Pressure measurement

- For pressure from 1 to 10⁻⁵ mmHg, McLeod vacuum gage is commonly used.
- Uncertainty: Pressure *p* 3~0.5% of reading • lack of continuous out Area A+ -• Based on Boyle's law $p_i V = p A_t h$ $= (p_i + \gamma h) A_t h$ Plunger Volume $p_i = \frac{\gamma A_t h^2}{V - A h} \approx \frac{\gamma A_t h^2}{V}$ -Specific veight y (6) $\{a\}$ Benedict (1984)

What is pressure transducer ?

Pressure transducers are devices those convert an applied pressure into a sensible signal (electric signal or others) through a sensor (displacement, strain, piezoelectric response...etc.).

Choose a Pressure transducer

- Common classifications :
 - (a) displacement type (includes diaphragm type)
 - (b) piezoelectric type
 - (c) piezoresistive type
 - (d) capacitance type
 - (e) reluctance type
- The choice of transducer varies greatly depending on many factor like: pressure range, dynamic response, pressure media, dimensional restrictions, budget...etc.

Bourdon gage

Oval cross section

- Simple & robust
- Max. measuring range: 0.6 ~ 10,000bar
- Min. resolution: ~10 Torr
- accuracy: 1~1.6% of F.S.

Measurement and Simulation of Optomechatronic Systems Q 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Spring

Elastic element of pressure transducer

Doebelin (1990)

Measurement and Simulation of Optomechatronic Systems

LVDT pressure transducer

- LVDT: Linear Variable Differential Transformer
- Limit frequency response ~ 10Hz

Measurement and Simulation of Optomechatronic Systems

Electro-optic transducer

Ref.

photo

diode

LED

Meas.

photo

diode

Pressure

- Infrared LED
- The reference and measurement photodiodes are equally affected by temperature change

Measurement and Simulation of Optomechatronic Systems

Diaphragm gage

12

10

- For low- and middle-pressure measuring range: 0.01 ~ 25bar
- min. resolution: ~10⁻³ Torr

Measurement and Simulation of Optomechatronic Systems

Diaphragm type strain-gage pickup

- For $y_c/t < 0.25$, linearity within 0.3%
- Measuring range: 0 10 ~ 3,000 bar.
- Dynamic frequency: DC ~ 10kHz
- Accuracy: ~ 0.1%

Measurement and Simulation of Optomechatronic Systems

Balance pot

Bellow pressure transducer

Measurement and Simulation of Optomechatronic Systems

•

•

Piezoelectric transducer

(Kistler Instrument Corp.)

- Suitable for high-frequencychanging and large pressure measurement, not suitable for low-frequency measurement
- Measuring range
 100mbar ~ 100kpsi.
- Accuracy: 1 ~ 3%
- Resonant frequency:
 0.25 ~ 0.5 MHz
- Temperature range: -200 up to 350°C (error <1%)
- Max. gas temp 2000 °C (for short time)

🕢 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Piezoresistive pressure transducer

- Piezoresistive effect $\Delta \rho / \rho \sim \Delta L / L$, where ρ : resistivity
- Gauge factor[$(\Delta R/R)/(\Delta L/L)$]: 50 ~ 100 (e.g., strain gage ~ 2)
- low cast
- Thermal zero drift
- SMI's chip

Capacitive Pressure Sensors

Measurement and Simulation of Optomechatronic Systems

Reluctance type transducer

Measurement and Simulation of Optomechatronic Systems

Pressure measurements in moving fluid

- Difficulties: (a) sensing small pressure in large pressures, (b)interface with different liquid
- $P_0 = P_s + P_d$
 - **P**₀: total (stagnation) pressure
 - **P**_s: static pressure
 - **P**_d : dynamics pressure
- For laminar flow, all pressure are steady, but the pressure are time-dependent for turbulent case. Kilohertz response of pressure transducer is needed for the latter case.

Static pressure measurement

- Pressure tap are small circular hole drilled perpendicular to the wall surface for measuring static pressure.
- The corner of the hole should be sharp and squared off.
- The recommended geometries are all from experimental determination.
- The orifice must be burr-free, for burr heights less than 1/30d, errors are less than 1% of $\rho V^2/2$
- In pipe flows, several taps around the circumference can be made and connected together in ring.

Measurement and Simulation of Optomechatronic Systems

Static pressure measurement

Measurement and Simulation of Optomechatronic Systems

Static pressure measurement

Measurement and Simulation of Optomechatronic Systems

Static pressure tube

Measurement and Simulation of Optomechatronic Systems

Multi-manometer

principle

Recorded by camera

Scanivalve

Advantage of scanivalve: only one pressure sensor (and also one calibration) is needed

- Mechanical type : range:±70 mbar ~ 34 bar time resolution : 3~5 measurements/s
- Electronic type : range :± 350mbar ~ 7bar time resolution : 10,000 measurements/s (all pressure sensor in one chip
 - + multiplexer-preamplifier.)

Measurement and Simulation of Optomechatronic Systems

Total pressure measurement (I)

- Pitot tube since 1732
- Based on Bernoulli equation $P_0 = P_s + P_d$
- The mechanical leading on the stem is roughly estimated as two times of the dynamic head.
- A total head tube with hemispherical tip will read the total head accurately independent of the size of the orifice opening as long as the yaw is less than 30.

Total pressure measurement (II)

Dynamic pressure measurement (I)

- Pitot-static tube (or Prandtl tube) is used to measure dynamic pressure and hence flow velocity.
- It should not be used at too low Reynolds numbers or too close to a wall.

光電工業教學資源中心

Opto-Electronics Teaching Resources Center

Dynamic pressure measurement (II)

Other operation notes for Pitot-static tube

 Time constant : the response rate for Pitot-static tubes depends on (a) length and diameter of pressure passages and (b) displacement volume of manometer e.g. 1.6 mm-O.D tube: 15~60seconds in air 0.8mm -O.D tube up to 15min in air (standard tubes are usually over 1.6mm O.D)

• Turbulence effect :

the measured pressure in isotropic turbulence is by Chue (1975): $\rho V^2/2 + \alpha \rho q^2$ where is 1/6 for small scale turbulence and 5/6 for large scale turbulence

Surface pressure measurement

- Applications: flow unsteadiness, aerodynamic noise
- pin-holes produce measuring distortion
- piezoelectric film, e.g. Polyvinylidenfluorid PVDF (t ~ 25μm), is flexible and smooth and can be glued directly on the surface of measuring object (Nitsche et al. 1989).

Measurement and Simulation of Optomechatronic Systems

Flow direction measurement

- Multi-hole pressure probes are used when both velocity magnitude and direction are to be determined. For applications in need of high spatial resolution, the three -hole probe (or 'cobra' probe can be used. In both pitch and yaw angles are required, the five-hole probe is used.
- The probe is rotated in the flow until the pitch angle is then known.
- Once calibrated, the (three-hole / five-hole) probe also allows the yaw angle to be measured.

Measurement and Simulation of Optomechatronic Systems

Pressure sensor in Micro-channel

Sound pressure measurement

Measurement and Simulation of Optomechatronic Systems

Sound pressure measurement

- Three filters (or weighting networks): A , B and C. A scale is commonly used.
- Free-field response of a microphone

Measurement and Simulation of Optomechatronic Systems

References

- Benedict, R.P "Fundamentals of temperature, pressure, and flow measurements", 3rd Ed., John Wiley & Sons, 1984.
- Bohl, W., "Technische Stroemungslehre", Vogel, 1991
- Chue, S,H, Pressure Probes for fluid measurement, Prog Aerospace Sci ,Vol. 16 147-223, 1975
- Dally, J.W., Riley, W.F. & McConnell, K.G., Instrumentation for Engineering Measurements, 2nd Ed., John Wiley & Sons, 1993.
- Doebelin, E.D "Measurement systems", 4th Ed., McGraw-Hill, 1990
- Ewald,,B. "Messtechink II, TH Darmstadt, 1991
- Goldstein, RJ, "Fluid Mechanics Measurements", 2nd Ed., Hemisphere, 1996
- Ho, C.-M. & Tai, Y.-C., Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows, Annu. Rev. Fluid Mech., Vol. 30, pp.579–612, 1998
- Pender, G.A., Measuring pressure in electronic system, in Azar, K. Editor, chapter 6, Thermal measurements in Electronic Cooling, CRC Press, 1997.
- Pong KC, Ho CM, Liu J, Tai YC., Non-linear pressure distribution in uniform microchannels, *ASME FED* 197, pp.51–56. 1994.
- Ras W.H, Pope "Low-speed wind tunnel testing," John Wiley & Sons, 1984
- Tropea, C, "Einfuehrung in die Stroemungsmechanik," LSTM-Erlangen, 1994
- Wuest, W., "Stromungsmebtechnik", Friedr. Vieweg & Sohn, 1969

