Temperature Measuring Technologies - *Noncontact Methods*

Tzong-Sheng Lee

$10/19/2001 \sim 11/09/2001$

References:

1. T.D. McGee, Principles and Methods of Temperature Measurement, John Wiley & Sons Inc., New York (1988).

2. The Temperature Handbook, Omega Engineering Inc., USA (1992).

3. J. Fraden, Handbook of Modern Sensors, Springer-Verlag, New York (1996).

4. W.L. Wolfe and G.J. Zissis, The Infrared Handbook, The Infrared Information and Analysis Center, ERIM (1978).

5. R.D. Hudson, Infrared System Engineering, Ch.2, John Wiley & Sons Inc., New York (1969).

6. AGEMA, Thermovision 782 operation manual, AGEMA (1984).

7. The Infrared Observer, 3(6) AGA Infrared Systems AB (1980).

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Outline

- 1. Introduction (i)
- 2. Temperature Sensor Classification (i)
- 3. The International Practical Temperature Scale (i)
- 4. Evolution of Noncontact Temperature sensors (i)
- 5. Thermal Radiation Theory (ii)
- 6. Infrared Radiometry (ii)
- 7. Temperature Measurement by Radiant Techniques (iii)
- 8. Infrared System Performance Evaluation (iii)
- 9. Applications of Infrared Sensing (iv)
- 10. Practical Operation (iv)

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

The Early History of Temperature Sensing

Year	Events		
1592	The first instrument to measure temperature – The thermoscope	Galilei, Greek	
1611	Temperature scale was added (but uncalibrated).	Galen	
1613	Using a thermoscope to record "degrees of heat" of winter snow, summer heat	Sagredo	
1624	"Thermometer" appeared in the literature.	Leurechon	
1654	The first sealed thermometer filled with spirits of wine – The Florentian thermometer.	Ferdinand II, Italy	ment
1661	The Florentian thermometer was exported to Rome, Paris, England.		ILe
1663	Attempted to calibrate and standardize thermometers – using ice point.	Hooke	ası
1694	Suggested ice point and boiling point as two fixed points and scale 12.	Renaldini	ue B
1701	Defined two fixed points: ice point and armpit temperature.	Newton, British	ct -
1708	Modified Romer(a Danish astronomer) scale to a Fahrenheit scale, substitute mercury for spirits, used a mixture of sea salt, ice, and water to produce the zero point. Ice point = 32, boiling point = 212.	Fahrenheit, Netherland	Conta
1742	Invented a scale with 0 at the steam point and 100 at the ice point.	Celsius, Sweden	
1743	Inverted Celsius scale and named "centigrade" to indicate a scale divided into 100 parts.	Christin, France	
1848	Define a thermodynamic (absolute) temperature scale with ideal gas (H2).	Kelvin	

Measurement and Simulation of Optomechatronic Systems 🕢 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

What is Temperature?

q Qualitative Definitions:

- 1. The degree of hotness or coldness of a body.
- 2. All bodies have the same temperature if they are in thermal equilibrium.
- 3. The level of thermal energy. (cf. Electrical energy; Mechanical potential energy.)

Unit		Symbol	Quantity measured
	1. Meter	m	Length
	2. Kilogram	kg	Mass
	3. Second	S	Time
Dimensioned	4. Ampere	А	Electric current
	5. Kelvin	K	Temperature
	6. Mole	mol	Amount of substance
	7. Candela	cd	Luminous intensity
Dimensionless	8. Radian	rad	Plane angle
Dimensioniess	9. Steradian	sr	Solid angle

q Units of temperature (one of System International units, SI) :

Measurement and Simulation of Optomechatronic Systems

How to Quantify It?

q Four common temperature scales: Fahrenheit(1708), Celsius(1740), Kelvin(1848), Rankine(1730) ٥F °C Κ °R $^{\circ}F = \frac{9}{5}(^{\circ}C) + 32$ **Boiling point** 212 100 373.15 672.67 $^{\circ}\mathrm{C}=\frac{5}{9}(^{\circ}\mathrm{F}-32)$ -273.15 -492.67 Ice point 32 0 0 K = 273.15+ °C $^{\circ}R = 459.67 + ^{\circ}F$ Absolute zero -459.67 -273.150 0

q Fundamental temperature scales:

The relationship of measured variable to temperature depends only on fundamental physical constants, not on arbitrary calibrating constants.

Examples:

- 1. Thermodynamic, $PV=PV(T, \underline{N}_A, \underline{k})$
- 2.Thermal radiance, W=W(T, k, c, h)

Measurement and Simulation of Optomechatronic Systems ⊘ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

What is Concerned?

Measurement and Simulation of Optomechatronic Systems ⊘ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Temperature Sensor Classification

	Principle							
Sensor	Thermo- electric	Electrical Resistance	Carrier Mobility	Thermal Radiation	Electrical Capacitance	Thermal Expansion	Resonant Frequency	Others
Thermocouple								
Thermopile								
RTD(PTC, NTC)								
Thermistor								
P-N junction								
Optical pyrometer								
Pyro-electric								
Quantum								
Spectroradiometer								
Cooling IR imager								
Uncooled IR imager								
Gas								
Liquid								
Bi-metal								
Quartz								
Liquid Crystal								1
Others								2,3,4,5
[Remark]: 1.Reflectance, 2.Index of Refraction, 3.Ultrasonic, 4.Microwave, 5.Acoustic								

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Thermocouple Sensor

q Thermoelectric Effect (Thomas Seebeck, Germany, 1821):

Two wires composed of dissimilar metals are connected at both ends, to make a complete electrical circuit, an electrical current will flow in the circuit if one of the ends is heated. (Thermocouple - Nobili, 1829)

Letter	P wire	N wire	Range	Accuracy	Order
Т	Cu	Ni45Cu55	-160~400 ℃	0.5 °C	7th
J	Fe	Ni45Cu55	0~760 ℃	0.1 °C	5th
E	Ni90 Cr 10	Ni45Cu55	-100~1000℃	0.5 °C	9th
К	Ni90 Cr 10	Ni95Mn2Al2Si1	0~1370℃	0.7 °C	8th
R	Pt87Rh13	Pt	0~1000 ℃	0.5 °C	8th
S	Pt 90 Rh 10	Pt	0~1750℃	1.0 °C	9th
В	Pt70Rh30	Pt94Rh6	870~1700 ℃	_	-

Measurement and Simulation of Optomechatronic Systems ⊘ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Thermopile Sensor

q Thermopile (Melloni,1833): A thermopile is serially connected thermocouples.

Measurement and Simulation of Optomechatronic Systems 必 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Practical Circuit of a Thermopile

Measurement and Simulation of Optomechatronic Systems 必 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

RTD and Thermistor

q Resistance Temperature Detector (RTD)

For general metal,

PTCR : Positive Temperature Coefficient of Resistance

$$R(T) = R_0[1 + a_0(T - T_0) + a_1(T - T_0)^2 + \dots]$$

 $a = \frac{1}{R} \frac{dR}{dT} \Big|_{T=T_0}$ Owing to a good linearity

q Thermal Sensitive Detector (Thermistor)

For Semiconductor,

NTCR : Negative Temperature Coefficient of Resistance

$$R(T) = R_0 e^{B(\frac{1}{T} - \frac{1}{T_0})} \qquad a = \frac{1}{R} \frac{dR}{dT} \Big|_{T = T_0} = -\frac{B}{T_0^2}$$

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

RTD Sensors

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Pyro-electric Sensor

Measurement and Simulation of Optomechatronic Systems Q 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Optical Pyrometer

q The disappearing filament optical pyrometer

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Spectroradiometer/Radiometer

	Blackbody radiation spectrum fitting	
Spectroradiome	eter	
Items	Specifications	
Spectral range	0.2 to 25 microns	
FOV	0.3 mrad - 100 mrad	
Focusing range	2.5m to infinity	
Scan rates	0.015 to 30 scans/sec	Radiometer
Chopping Frequency	100 to 1800 Hz.	

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Infrared Imager

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Temperature Scales

q Requirements for establishing a temperature scale:

- 1. Set the fixed points and given the temperature value.
- 2. Choosing an appropriate instrument to interpolate scale.
- 3. Determine the relationship between the measurement variable and the temperature.

q The International Practical Temperature Scale:

The International Committee of Weights and Measures (1927,.. 1960,.. 1968,.. 1990) Fixed points: 6(ITS-27), 13(IPTS-68), 17(ITS-90)

Number	°C	Substance	State			
1	-182.97	O ₂	Boiling Point	Range	°C	Interpolating Instrument
2	0.000	H ₂ O	Freezing Point	I	-182.97 ~ 0	Platinum resistance
3	100.000	H ₂ O	Boiling Point		0 ~ 660	Platinum resistance
4	444.60	S	Boiling Point		660 ~ 1063.0	S-type thermocouple
5	960.5	Ag	Freezing Point		000 ~ 1003.0	
6	1063.0	Au	Freezing Point	IV	>1063.0	Optical pyrometer

Defining fixed points of the ITS-27 \degree

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

ITS-90 (1)

q The International Temperature Scale of 1990 (ITS-90)

[Ref]:http://www.omega.com/techref/intltemp.html

1. Units of Temperature

The unit of the fundamental physical quantity known as thermodynamic temperature, symbol T, is the kelvin symbol K, defined as the fraction 1/273.16 of the thermodynamic temperature of the triple point of water. Because of the way earlier temperature scales were defined, it remains common practice to express a temperature in terms of its difference from 273.15 K, the ice point. A thermodynamic temperature, T, expressed in this way is known as a Celsius temperature, symbol t, defined by:

 $t / ^{\circ}C = T / K - 273.15$

The unit of Celsius temperature is the degree Celsius, symbol $^{\circ}$ C, which is by definition equal in magnitude to the kelvin. A difference of temperature may be expressed in kelvins or degrees Celsius. The International Temperature Scale of 1990 (ITS-90) defines both International Kelvin Temperatures, symbol T90, and International Celsius Temperatures, symbol t90. The relation between T90 and t90 is the same as that between T and t, i.e.:

t_{90} / °C = T_{90} / K - 273.15

The unit of the physical quantity T90 is the kelvin, symbol K, and the unit of the physical quantity T90 is the degree Celsius, symbol $^{\circ}$ C, as is the case for the thermodynamic temperature T and the Celsius temperature t.

Measurement and Simulation of Optomechatronic Systems ⊘ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

ITS-90 (2)

2. Principles of the International Temperature Scale of 1990 (ITS-90)

The ITS-90 extends upwards from 0.65 K to the highest temperature practicably measurable in terms of the Planck radiation law using monochromatic radiation. The ITS-90 comprises a number of ranges and sub-ranges throughout each of which temperatures T90 are defined. Several of these ranges or sub-ranges overlap, and where such overlapping occurs, differing definitions of T90 exist: these differing definitions have equal status.

3. Definition of the International Temperature Scale of 1990

Between 0.65 K and 5.0 K T90 is defined in terms of the vapour-pressure temperature relations 3He and 4He.

Between 3.0 K and the triple point of neon (24.5561 K) T90 is defined by means of **a helium gas thermometer** calibrated at three experimentally realizable temperatures having assigned numerical values (defining fixed points) and using specified interpolation procedures.

Between the triple point of equilibrium hydrogen (13.8033 K) and the freezing point of silver (961.78°C) T90 is defined by means of **platinum resistance thermometers** calibrated at specified sets of defining fixed points and using specified interpolation procedures.

Above the freezing point of silver (961.78°C) T90 is defined in terms of a defining fixed point and the Planck radiation law.

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Defining Fixed Points of the ITS-90

	Temperature			
Number	T ₉₀ /K	t ₉₀ /⁰C	Substance	State
1	3 to 5	-270.15 to -268.15	He	V
2	13.8033	-259.3467	e-H ₂	Т
3	~17	~-256.15	e-H ₂ (or He)	V (or G)
4	~20.3	~-252.85	e-H ₂ (or He)	V (or G)
5	24.5561	-248.5939	Ne	Т
6	54.3584	-218.7916	O ₂	Т
7	83.8058	-189.3442	Ar	Т
8	234.3156	-38.8344	Hg	Т
9	273.16	0.01	H ₂ O	Т
10	302.9146	29.7646	Ga	М
11	429.7485	156.5985	In	F
12	505.078	231.928	Sn	F
13	692.677	419.527	Zn	F
14	933.473	660.323	AI	F
15	1234.93	961.78	Ag	F
16	1337.33	1064.18	Au	F
17	1357.77	1084.62	Cu	F

V: vapor pressure point; T: triple point; G: Gas thermometer point;

M: melting point; F: Freezing point

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Evolution of IR Sensor Technologies

Optomechatronic Systems

Opto-Electronics Teaching Resources Center

Development of Uncooled IR Imagers

1970			1979	1980			1985	1986
Uncooled IR I	Detector		100x100 BST Array	Micro	obolome Array	ter	SRTS	
NVEOD, Honey	well, Philip		TI	H	oneywel	I I N	TI, Honeyw Aagnavox	vell (1x64 PbSe
1987	1988	1989	1991		1995	1996	1997	2001
HIDAD	80000 pixel NETD < 1.	ls/ 0C	Microbolometer Ima NETD = 0.1C	ger/		Commo Uncooled	ercialized IR Image	r
Honeywell, TI Hughes Rockwell NVEOD : Nigh BST : Barium SRTS : Short-H -> uncooled rif HIDAD : High -> 80000 pixels	TI (BST) 328x245 at Vision & El Strontium Tia Range Thermo fle sights -Density Arra s, 2x2 mils, N	Honeywell (V ₂ O ₅) 64x128	Honeywell 336x240 <i>rectorate</i> tric detectors m / NVEOD & DARPA program /NVEOD & E	 1. Lo 3. Hu 5. Al 	TI (Nig oral 2 ughes 4 liant Teo Mic	ght Sight) . Rockwel . Raytheo chsystems crobolon IRFPA	Ra (T) Il An on Ma 5 (Lo Bo (Ro FL (A) Inf NE LE	ytheon I, Hughes, nber) artin oral) eing ockwell) JR GEMA, frametric) CC, INO, CTI

Measurement and Simulation of Optomechatronic Systems Q 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

The Electromagnetic Spectrum

Measurement and Simulation of Optomechatronic Systems ⊘ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Visible cf. Thermal Radiation (1)

q Target signature (Spatial Distribution)

Visible(0.4-0.75µm)

FIR(8-12µm)

FIR(8-12µm)

§ Active sensing : Visible, NIR§ Passive Sensing : Visible, NIR, MIR, FIR

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Visible cf. Thermal Radiation (2)

q Background signature (Spatial Distribution)

Ref. "Thermal imaging solutions", TI NIGHTSIGHT interactive explorer.

Measurement and Simulation of Optomechatronic Systems ⊘ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Thermal Radiation Theory

q Thermal Radiation

All heated objects will emit EM radiant energy owing to the accelerated charges in the objects.

q Kirchhoff (1860)

§ Introduced the radiation transfer law, good absorbers are also good radiators.

§ Proposed the term blackbody to describe a body that absorbs all of the incident radiant energy. - A standard radiator: can be used to compare any other source.

q Key events of research for blackbody radiation

§ Stefan(1879), Boltzmann(1884)

- the total amount radiation of a blackbody is proportional to the fourth power of its absolute temperature.

§ Wien (1894)

- attempted to give a general form for spectral distribution of the blackbody radiation.
- § Rayleigh, Jeans (1900)
 - used a cavity model with the concepts of classical physics, derived an expression and attempted to fit the experimental data at long wavelengths.

Measurement and Simulation of Optomechatronic Systems Q 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Planck's Law

q Planck (1900)

- § The radiant energies of oscillators increases only in discrete step, differing by the quantity hn.
- **§** The spectral distribution of the radiation from a blackbody, spectral radiant emittance W_1 is

$$W_{I} = p N_{I} = \frac{2phc^{2}}{I^{5}} \frac{1}{e^{hc/Ik_{b}T} - 1} \qquad [W \cdot cm^{-2} \cdot \mu^{-1}]$$

 $k_b = 1.38 \times 10^{-23}$ joule/K, Boltzmann's constant $h = 6.63 \times 10^{-34}$ joule-sec, Planck's constant Exitance or Emittance ?

q Convenient form

$$W_{I} = \frac{c_{1}}{l^{5}} \frac{1}{e^{c_{2}/lT} - 1} \qquad c_{1} = 3.7415 \times 10^{4} \left[W \cdot cm^{-2} \cdot \mu^{4} \right] : 1^{\text{st}} \text{ radiation constant}$$
$$c_{2} = 1.4388 \times 10^{4} \left[\mu \cdot K \right] : 2^{\text{nd}} \text{ radiation constant}$$

Measurement and Simulation of Optomechatronic Systems

The Blackbody Radiation

Measurement and Simulation of Optomechatronic Systems Q 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

The Standard Radiative Sources

q Blackbody types

q Standard types

- Primary
 Secondary
- 3. Working

Metal	Freeze Temp.[C]	Uncertainty
Copper	1084.62	0.50
Gold	1064.18	0.40
Silver	961.78	0.40
Aluminum	660.32	0.30
Zinc	419.53	0.30
Tin	231.93	0.20
Indium	156.60	0.20

 $Emissivity: 0.999 \pm 0.0005$

Measurement and Simulation of Optomechatronic Systems 必 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

The Concepts of Emissivity

Measurement and Simulation of Optomechatronic Systems Ø 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Emissivity of Common Materials

	Metal	Temp[°C]	е	Ме	etal	Temp[℃]	е
AI	polished anodized vacuum deposited	100 100 20	0.05 0.55 0.04	Fe	polished oxidized rusted	40 100 20	0.21 0.64 0.69
Stainless Steel	polished oxidized at 800°C	20 60	0.16 0.85	Ni	polished no polished oxidized	20 20 200	0.05 0.11 0.37
Steel	polished oxidized	100 200	0.07 0.79	Cu	polished oxidized	100 20	0.05 0.78
Au	polished	100	0.02	Ag	polished	100	0.03
Mg	polished	20	0.07	Sn	polished	100	0.07
	Others	Temp[℃]	е	Others		Temp[°C]	е
Carbon	candle soot graphite	20 20	0.95 0.98	Soil	dry wet	20 20	0.92 0.95
Water	distilled ice	20 -10	0.96 0.96	Water	frost snow	-10 -10	0.98 0.85
Skin Paper Glass	human white polished	32 20 20	0.98 0.93 0.94	Plaster Concrete Sand	Rough coat - -	20 20 20	0.91 0.92 0.90

Measurement and Simulation of Optomechatronic Systems ⊘ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Temperature and Skin Materials

q Hot or cold skin?

in actual situations, a_l and e_l are not to be equal for a surface due to the temperature dependence of them and temperature differences between two sources. Using this fact, a hot or cold skin can be achieved by selecting materials with a high or low value of a_l / e_l .

§ The ratio of the absorptance a_s for solar radiation (6000K) and the emissivity e_a for low-temperature radiation (300K)

Material		a _s	e _a	a _s /e _a
ΑΙ	polished	0.387	0.027	14.35
	sandblasted	0.42	0.21	2.0
	anodized	0.15	0.77	0.19
Paints	Cu	0.782	0.49	1.60
	Al	0.54	0.45	1.2
	Mg	0.936	0.844	1.11
	TiO2(gray)	0.87	0.85	1.0
	TiO2(white)	0.19	0.94	0.2

Measurement and Simulation of Optomechatronic Systems ⊘ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Atmospheric Transmittance

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Atmospheric Trans. v.s. Range (1)

Measurement and Simulation of Optomechatronic Systems ⊘ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Atmospheric Trans. v.s. Range (2)

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Radiometry Terminology

Terminology	Symbol	Unit			
Radiant energy	U	Joule			
Radiant power(flux)	Р	Watt			
Radiant emittance	W	W cm ⁻²			
Radiance	N (L)	W cm ⁻² sr ⁻¹			
Radiant intensity	J (I)	W sr⁻¹			
Irradiance H(E) W cm ⁻²					
[Remarks] : Spectral + item = item per wavelength					

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center
Point Radiator

q Point source

- 1. The physical size is not concerned but the subtend angle of the sensor.
- 2. If sensor has no optics, any source can be considered as a point source at a distance > 10 times the largest dimension of sensor.
- 3. If sensor has optics, the source size can not fill the FOV of the sensor.

q Radiant Intensity

The radiant flux emitted per unit solid angle

Measurement and Simulation of Optomechatronic Systems ⊘ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Extended Radiator

q Extended source

- 1. If sensor has no optics, the source at a distance < 10 times the largest dimension of sensor.
- 2. If sensor has optics, the source size can fill the FOV of the sensor.

q Radiance

The radiant flux emitted per unit solid angle per unit area

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Optical System Consideration

q Spectral irradiance for an optical system in real world (for target size fills FOV of the optical system)

Measurement and Simulation of Optomechatronic Systems ⊘ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

The Effect of Misalignment

q The irradiance variation when misalignment occurs

Measurement and Simulation of Optomechatronic Systems Ø 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

IR Measurement in the Nature

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

The Radiation Relationship

q The radiation relationship between target and sensor

§ Sensor signal output

$$V_{tot}^{t} = t_{a}e_{t}V_{bb}^{t} + t_{a}(1-e_{t})V_{b} + (1-t_{a})V_{a}$$

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Temperature Measurement Process

q The signal response of radiation from a blackbody target

$$V_{bb}^{t} = \frac{V_{tot}^{t}}{t_{a}e_{t}} - (\frac{1}{e_{t}} - 1)V_{b} - \frac{1}{e_{t}}(\frac{1}{t_{a}} - 1)V_{a}$$

q Treatment procedure

- 1. Measure V_{tot}^t
- 2. Set e_t (by measurement or lookup table)
- 3. Set t_a (by measurement or theoretical calculation)
- 4. Set ambient temperature (by measurement) to obtain V_b and V_a by using the calibration curves
- 5. Substitute V_{tot}^t , e_t , t_a , V_b and V_a into the above formula to calculate V_{bb}^t , then obtain target temperature by using the calibration curves

Measurement and Simulation of Optomechatronic Systems 🔗 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Calibration Model

q Transfer function for various system specs

 $k = k(\underline{F_{no}}, \underline{t_{ol}}, \underline{t_{fl}}, \underline{R_l}, A_d)$ Aperture, Lens, Filter, Detector

q System calibration by using a blackbody at various temperatures

$$V_{out} = \int_{l_1}^{l_2} R_I H_{dl}(T) A_d dl$$

= $\frac{1}{4F_{no}^2} \int_{l_1}^{l_2} R_I A_d t_{ol} t_{fol} W_I(T) dl$ $W_I(T) = \frac{C_1}{l^5} \frac{1}{e^{C_2/lT} - 1}$
= $\frac{K_1}{K_3 e^{K_2/T} - 1}$

 $V_{out} = V_{out}(k_1, k_2, k_3, T)$

Measurement and Simulation of Optomechatronic Systems ⊘ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Typical Calibration Curves

Measurement and Simulation of Optomechatronic Systems Q 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Emissivity Measurement Model

q The general form of target emissivity measurement

$$e_{t} = \frac{V_{tot}^{t} - t_{a}V_{b} - (1 - t_{a})V_{a}}{t_{a}(V_{bb}^{t} - V_{b})}$$

q Eliminating the atmospheric radiance contribution

1. Using a reference source with known emissivity e_r close to the target

$$V_{tot}^{r} = t_{a}e_{r}V_{bb}^{r} + t_{a}(1-e_{r})V_{b} + (1-t_{a})V_{a}$$

- 2. Subtract V_{tot}^r from V_{tot}^t $V_{tot}^t - V_{tot}^r = t_a(e_t V_{bb}^t - e_r V_{bb}^r) + t_a(e_r - e_t)V_b$
- 3. The new form

$$e_{t} = \frac{V_{tot}^{t} - V_{tot}^{r} + t_{a}e_{r}(V_{bb}^{r} - V_{b})}{t_{a}(V_{bb}^{t} - V_{b})}$$

Measurement and Simulation of Optomechatronic Systems ⊘ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Emissivity Measurement Methods (1)

q Case 1 (the commonest case)

- 1. Heat target to a known temperature or measure its temperature with any contact sensor
- 2. Obtain V_{bb}^{t} by using the calibration curves
- 3. Align the sensor with the normal of target and place it as close as possible, in order to neglect the effects of ambient conditions, i.e. $t_a = 1$, $V_b \approx 0$
- 4. Measure V_{tot}^t and calculate the emissivity with the formula, $e_t = V_{tot}^t / V_{bb}^t$

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Emissivity Measurement Methods (2)

q Case 2 (the general case)

- 1. The same as case 1
- 2. The same as case 1
- 3. Obtain V_{bb}^r and V_b with the same method as V_{bb}^t
- 4. Calculate t_a with LOWTRAN model
- 5. Measure V_{tot}^{t} and V_{tot}^{r} calculate the emissivity with the formula,

$$e_{t} = \frac{V_{tot}^{t} - V_{tot}^{r} + t_{a}e_{r}(V_{bb}^{r} - V_{b})}{t_{a}(V_{bb}^{t} - V_{b})}$$

Measurement and Simulation of Optomechatronic Systems Ø 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Emissivity Measurement Methods (3)

q Case 3

Using ambient (background) as the reference source

- 1. Obtain V_{bb}^{t} and V_{b} with the same method as case 2
- 2. Calculate t_a with LOWTRAN model
- 3. Measure V_{tot}^{t} and V_{tot}^{r} calculate the emissivity with the formula,

q Case 4

The portion of target is coated and as the reference source

- 1. The same as case 3
- 2. The same as case 3

3. The same as case 3 but with the formula,

$$e_t = \frac{V_{tot}^t - V_{tot}^r}{t_a(V_{bb}^t - V_b)} + e_r$$

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Emissivity Measurement Methods (4)

Case 5 (spectral emissivity) Using a spectroradiometer and a blackbody source as the reference source with known temperature equals to that of target

- 1. The same as case 1
- 2. The same as case 1
- 3. Obtain $V_{bb}^{r}(I)$ and $V_{b}(I)$ with the same method as $V_{bb}^{t}(I)$
- 4. Calculate t_a with LOWTRAN model
- 5. Measure V_{tot}^{t} and V_{tot}^{r} calculate the emissivity with the formula,

$$e_{t}(I) = \frac{V_{tot}^{t}(I) - V_{tot}^{r}(I)}{t_{a}(I)(V_{bb}^{t}(I) - V_{b}(I))} + e_{r}(I)$$

Note: in this case,

$$e_r(l)\approx 1, \quad V_{bb}^r(l)\approx V_{bb}^t(l)$$

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Classification of IR Thermometer

q Wideband

Most IR thermometer use a wideband and choose 8-14mm range for adequate target radiation and atmospheric transmittance. Ex. Radiometer, Thermal Imager

q Narrowband

The IR thermometers use a narrowband are costlier because they need a special filter and usually to be constructed by a complicated optomechanical system.

Ex. Optical pyrometer, Thermal Imager for high temperature or special purpose measurement

q Ratio (Two-color)

Measuring the ratio of radiations at two selected narrow bands (near 0.9 mm for high temperature measurement).

Ex. Two-color IR thermometer

Measurement and Simulation of Optomechatronic Systems

Narrowband Measurement

q Wien's law and Planck's law

$$W_{l}(T)_{Wien} = \frac{c_{1}}{l^{5}} \frac{1}{e^{c_{2}/lT}} \longleftrightarrow W_{l}(T)_{Planck} = \frac{c_{1}}{l^{5}} \frac{1}{e^{c_{2}/lT} - 1}$$

Error =
$$\frac{W_{1}(T)_{Planck} - W_{1}(T)_{Wien}}{W_{1}(T)_{Planck}} = e^{-C_{2}/1T}$$

Ex. T=1000K Error = 23.7% (10µ) $Error = 2x10^{-8}\%$ (0.655µ)

q The brightness temperature

$$e = \frac{c_1 l^{-5} e^{-C_2 / l T_B}}{c_1 l^{-5} e^{-C_2 / l T_{bb}}} \qquad \frac{1}{T_B} = \frac{1}{T_{bb}} - 4.552 \times 10^{-5} \ln e$$

for $l = 0.655 \, mm$

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

The Effect of Emissivity Errors

Measurement and Simulation of Optomechatronic Systems ⊘ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Two-color Measurement

q Advantages and Disadvantages

- **§** If the change in emissivity at the two selected wavelength is the same, the effect of emissivity is eliminated.
- **§** The target need not fill the FOV of the thermometer. The effects of dust, smoke, and distance can be neglected as long as the ratio dose not vary.
- § The accuracy will be less than 1-color thermometer if the ratio highly varies.

Measurement and Simulation of Optomechatronic Systems

Two-color Temperature

q Derivation of two-color temperature

The received radiation ratio R of two selected wavelength

$$R = \frac{k(l_1)e(l_1)W_{l_1}(T)dl_1}{k(l_2)e(l_2)W_{l_2}(T)dl_2} = \frac{k(l_1)e(l_1)c_1l_1^{-5}e^{-C_2/l_1T}dl_1}{k(l_2)e(l_2)c_1l_2^{-5}e^{-C_2/l_2T}dl_2}$$

$$T = \left(\frac{1}{I_2} - \frac{1}{I_1}\right) \frac{c_2}{\ln R + 5\ln(I_1/I_2) - \ln[k(I_1)/k(I_2)] - \ln[e(I_1)/e(I_2)]}$$

If the transmission factor and emissivity are the same at both wavelength,

$$T_{c} = (\frac{1}{I_{2}} - \frac{1}{I_{1}}) \frac{c_{2}}{\ln R + 5 \ln(I_{1} / I_{2})}$$

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Analysis of Two-color Methods

q The error occurs between actual temperature and T_c

Error
$$= \frac{1}{T} - \frac{1}{T_c} = \frac{\ln[k(l_1) / k(l_2)] + \ln[e(l_1) / e(l_2)]}{c_2 (\frac{1}{l_1} - \frac{1}{l_2})}$$

§ The measured temperature T_c can be equal, lower, or higher than actual temperature, it is different from the result of other IR thermometers which always get a lower one.

q The better measurement conditions

- **§** Higher target temperature
- § Shorter wavelength used
- § The bandwidth for each color must be very narrow
- § To obtain the ratio of emissivity and transmission factor at both wavelength if they are not equal

Measurement and Simulation of Optomechatronic Systems

IR S.E. for Point Sensing

Optomechatronic Systems

Opto-Electronics Teaching Resources Center

IR S.E. for Image Sensing (1)

NETD: Noise Equivalent Temperature Difference MRTD: Minimum Resolvable Temperature Difference

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

IR S.E. for Image Sensing (2)

Measurement and Simulation of Optomechatronic Systems ⊘ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Evaluation of System Performance

Measurement and Simulation of Optomechatronic Systems Ø 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

⁹ Military Applications of IR sensing (1)

目標檢知	戰略	戰術	後勤支援
存在	戰略警告	1 飛彈導引	1入侵偵測
方位	I 洲際飛彈預警	1 近發引信	碰撞警告
運動	軍事行動確認	碰撞警告	I 坦克偵測
		1入侵偵測	
時間變化	目標確認	目標確認	1 監視傷患治療
			I 生化感應器
光譜分佈	目標背景信號	毒氣偵測	I 污染偵測
	1 大氣溫度	1 氣流偵測	
		目標背景信號	
空間分佈	戰略搜索	戰場搜索監視	I 傷患鑑定監視
	地球資源、農業	I 潛艇偵測	I防寒衣物效能
	天候、冰山	1 損害鑑定	
	軍事行動確認		

Measurement and Simulation of Optomechatronic Systems ⊘ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

⁹ Military Applications of IR sensing (2)

q IR reticle seeker

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Military Applications of IIR (1)

q FLIR system

IIR: Imaging IR Sensing

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Military Applications of IIR (2)

q Military Surveillance/ Search and track

Measurement and Simulation of Optomechatronic Systems Q 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Commercial Applications of IR sensing⁹

環保	 ·工廠廢氣監控 · 核能廠排水監控 · 森林防火 · 大氣汙染偵測
製程監控	·電力系統檢測 ·熱流管線安全檢查 ·設備自動監控 ·各種非破壞性檢測
治安保全	·海上緝私與海岸偵查 ·警察夜間勤務 ·各種災難搜索救援 ·一般保全系統
交通	·汽車輔助駕駛 ·飛機輔助起降 ·船艦夜視導航
醫療診斷	·癌症腫瘤診斷 ·血管與皮膚異常檢查 ·運動傷害檢查
其他	·地球資源遙測 ·衛星氣象偵測 ·材料性質研究 ·各種熱分佈科學研究

Measurement and Simulation of Optomechatronic Systems 必 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Consuming Applications of IR sensing (1)

q PIR system for lighting switch

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center 9

Consuming Applications of IR sensing (2)

Radiometer

9

Measurement and Simulation of Optomechatronic Systems 必 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Industrial Applications of IIR (1)

q General nondestructive testing

Measurement and Simulation of Optomechatronic Systems 必 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Industrial Applications of IIR (2)

q PCB nondestructive testing

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Industrial Applications of IIR (3)

Measurement and Simulation of Optomechatronic Systems 必 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Industrial Applications of IIR (4)

Ref. The IR Observer, AGA infrared systems AB.

Measurement and Simulation of Optomechatronic Systems Q 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Medical Applications of IIR (1)

利用熱像儀檢查關節發炎的部位 與嚴重程度

利用熱像儀診斷手部因運動傷害,所造成的血液循環不良狀況

乳癌诊斷

Measurement and Simulation of Optomechatronic Systems
Medical Applications of IIR (2)

q Surgical operation

Ref. The IR Observer, AGA infrared systems AB.

Measurement and Simulation of Optomechatronic Systems Q 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

Applications of IIR (1)

Measurement and Simulation of Optomechatronic Systems 必 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Applications of IIR (2)

Ref. The IR Observer, AGA infrared systems AB.

Measurement and Simulation of Optomechatronic Systems ⊘ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

Applications of IIR (3)

Ref. The IR Observer, AGA infrared systems AB.

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Applications of IIR (4)

Ref. The IR Observer, AGA infrared systems AB.

Measurement and Simulation of Optomechatronic Systems ⊘ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

Applications of Uncooled IIR (1)

Source: TI NIGHTSIGHT interactive explorer.

Measurement and Simulation of Optomechatronic Systems ⊘ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Applications of Uncooled IIR (2)

Measurement and Simulation of Optomechatronic Systems ᢙ 光電工業教學資源中心 Opto-Electronics Teaching Resources Center

Applications of Uncooled IIR (3)

Measurement and Simulation of Optomechatronic Systems 必 光電工業教學資源中心 Opto-Electronics Teaching Resources Center