

光流體生醫元件與技術 Introduction of Optofluidics

黃念祖 副教授 國立臺灣大學

電機工程系 生醫電子與資訊學研究所

2018/11/02 Introduction to Lab on a Chip

Outline

- What are Optofluidics?
- Why Optofluidics?
 - Optics
 - Microfluidics
- Optofluidics applications
 - Optical devices / components
 - Chemical/medical diagnosis
 - Energy applications

Navy Research Laboratory

What are Optofluidics?

- A research area integrates optics and microfluidics
 - Emerging from microfluidics and nanophotonics in the mid-2000
- Optics: light source, detector, treatment, sample manipulation
- Microfluidics: sample manipulation, guiding, process

Research Activities of Optofluidics

Journals & Conferences

The 8th International Multidisciplinary Conference on Optofluidics 2018

5th - 8th August 2018

Baolong Hotel, Shanghai, P.R.China

Journal home > Focus > Optofluidics

Optofluidics Paper Numbers on 865 860 Google Scholar 655 510 430 357 206 89 23 13 4 8 08' 09' 12' 13 02' 03 04' 05 06 07' 10' 11'

Current Research and Technologies [edit]

There are numerous research groups worldwide working on optofluidics, including those listed below.

Country 🔶	University / Institute 🔶	Group 🔶	Topic 🔶
🎌 Australia	University of Sydney	CUDOS (Eggleton) ^[5]	Photonic Crystals.
Austria	Johannes Kepler University Linz	Institute for Microelectronics and Microsensors (Jakoby) ^{[6}	¹ Fluidic sensors, Miniaturized IR sensor systems, microfluidic actuators.
Canada	University of Toronto	Sinton Group ^[7]	biosensors, energy.
Canada	University of Toronto	Biophotonics Group (Levy) ^[8]	Photonic crystals, sensors.
🔸 Canada	The University of British Columbia	MiNa Group ^[9]	Integrated optofluidics, sensors.
Canada	Queen's University	Escobedo Group ^[10]	Optical Diagnostics, Micro/Nano-devices.
Denmark	Danish Technical University	Kristensen Group ^[11]	Polymer optofluidics, lasers, single molecule analysis.
💿 Israel	Hebrew University	NanoOpto Group (Levy) ^[12]	Optical Resonators, Plasmonics.
Iran	Sharif University of Technology	M.S. Saidi Group ^[13]	Optical Diagnostic Methods, Biofluids.
💓 South Korea	Seoul National University	Biophotonics and Nano Engineering Lab (Kwon) ^[14]	Directed assembly, sensors, structural color.
💓 South Korea	KAIST	Superlattice Nanomaterials Lab (Yang) ^[15]	Optofluidic materials, SERS sensors.
Germany	Technical University Berlin	Institute of Optics and Atomic Physics	Glass surface and volume structuring.
Germany	Karlsruhe Institute of Technology	Biophotonic Sensors Group (Mappes) ^[16]	Sensors, fabrication and integration techniques.
Germany	University of Münster	Nonlinear Photonics Group (Denz) [17]	Optical tweezing and its integration into optofluidic setups, direct-laser-writing of optofluidic components
Republic of China	a National Taiwan University	Bio-Optofluidic System Lab ^[18]	optical sensing for dynamic cellular phenotyping.
+ Switzerland	EPFL	Psaltis Group ^[19]	optofluidic switches, imaging, energy.
Singapore	Nanyang Technological University	A.Q. Liu Group ^[20]	Optofluidic waveguides, lab-on-a-chip devices.
Singapore	Nanyang Technological University	N.T. Nguyen Group ^[21]	Diagnostics, Transport.
Template:ES	ICFO-The Institute of Photonic Sciences	; Quidant group ^[22]	LSPR sensing, Plasmonic tweezers.
C Turkey	Koç University	Nano-Optics Research Lab. ^[23]	Droplet resonators, optofluidic waveguides, optical trapping and manipulation.
Stand Kingdom	University of St Andrews	Optical Manipulation Group ^[24]	Optofluidic sensing, trapping, Raman spectroscopy, cell sorting, photoporation
🚟 United Kingdom	University of Strathclyde	Centre for Microsystems & Photonics ^[25]	Optofluidic components in photonic systems
United States	Purdue University	Steve Wereley Group ^[26]	Holographic optical tweezing, Optoelctrokinetic Patterning, Programmable Microfluidics, Micro-PIV.
United States	Cornell University	Erickson Group ^[27]	nanophotonic tweezing, optofluidic switches, biosensors, energy.
United States	UC Santa Cruz	Applied Optics Group ^[28]	Arrow waveguides, single molecule optofluidics.
United States	Brigham Young University	Hawkins Research Group ^[29]	Optofluidic waveguides, single molecule optical analysis.
United States	Caltech	Yang Biophotonics Group ^[30]	Optofluidic Microscopy, Imaging, OCT.
United States	UC San Diego	Ultrafast and Nanoscale Optics Group (Fainman) ^[31]	Nanoscale lasers, optofluidic switches, silicon devices.
United States	University of Michigan	Sherman Fan Lab ^[32]	Optofluidic lasers, SERS, ring resonators.
United States	University of Maryland	White Research Group ^[33]	Medical diagnostics, SERS, circulating tumor cells.
United States	Caltech	Nanofabrication Group (Scherer) ^[34]	Optofluidic Lasers, DNA detection, photonic crystals.
United States	Penn State	BioNEMS Laboratory (Huang) ^[35]	Optofluidic lenses, plasmonics.
United States	UC Berkeley	BioPOETS (Lee) ^[36]	Optofluidic transport, SERS, microfluidics.
United States	UC Berkeley	Berkeley Integrated Photonics Lab (Wu) ^[37]	Optoelectronic tweezers.
United States	UC San Diego	Lo Research Group ^[38]	Optofluidic flow cytometry.
United States	UIUC	Nano Sensors Group (Cunningham) ^[39]	Photonic Crystal Sensors, SERS.
United States	Harvard	Crozier Group ^[40]	Near Field Trapping, SERS
United States	Princeton University	Imaging Physics Group ^[41]	Microfluidic Tomography, ^[42] Deconvolution, ^[43] Superresolution ^[44]
United States	Iowa State University	Nastaran Hashemi Group ^[45]	Optofluidics, microfluidics, biosensors, diagnostics and therapeutics, energy.
United States	Iowa State University	Attinger Group ^[46]	Optofluidic transport
United States	Boston University	LINBS (Altug) ^[47]	Plasmonics, nanohole sensors, high throughput diagnostics
United States	University of Wisconsin, Madison	Micro/nano sensors and actuators group ^[48]	Liquid tunable microlenses.
Belgium	Vrije Universiteit Brussel	Brussels Photonics Team (B-PHOT) ^[49]	https://en.wikipedia.org/wiki/List_of_optofluidics_researchers

Optofluidics Applications

(Nanoscale, 2012, 4, 4839-4857)

https://www.youtube.com/watch?v=-vwQ47TLJrA

Optofluidics for Optical Components

- Optical devices
 - Liquid waveguide, liquid lens, liquid mirror
- Optical manipulation
 - Cell, particle trapping, sorting and selection
- Optical sensing
 - Cell based analysis
 - Molecular imaging tools
 - Lab-on-chip devices

Liquid mirror telescopes

Materials? Advantages?

Optofluidics for Optical Components

Luke Lee's group at UC Berkeley

Optical attenuator

Tony Huang's group at PSU

Optofluidics for Optical Components

(FRET) based

с

Forster resonance energy transfer

- Dye laser
 - a laser which uses an organic dye as the lasing medium

R6G as the fluid medium

Optofluidics for Biological Analysis

- Optics for biological analysis
 - Non-invasive, less disturbing
 - High spatial resolution (~µm)
 - Fast response (real-time analysis)
 - Low biological damage
- Microfluidics for biological analysis
 - Laminar flow
 - Less sample and reagent requirement
 - Multi-functional analysis
 - Fast and uniform nutrition transfer

A. Folch Group at U Washington

Optofluidics for Biological Analysis

NanoTweezer

- First commercial product in optofluidic field
- Develop by Prof. Erikson at Cornell at Cornell University

NanoTweezer

Based on photonic crystal resonator to enhance scattering

 Particle trapping, protein aggregation analysis, dynamic label- free particle shape analysis

force

Optical Force to Manipulate Particles

- Gradient force trapping
 - Pulling force: proportional to the gradient of light intensity $2\pi\nabla L q$

 $F_{grad} = \frac{2\pi \nabla I_o \alpha}{c}$

- Scattering force trapping
 - Weak repulsive force: along the propagation direction: proportional to the intensity of light
 - Less damage, suitable for stretching and rotating cells

(b)

 $F_{scat} = \frac{8\pi^3 I_o \alpha^2 \varepsilon_m}{3c\lambda^4}$

http://optical-tweezers.com/RadiationPressure.htm

Next Steps of Optofluidics?

- Optofluidics should miniaturize optical components into one chip
 - A Lab-on-Chip device for point of care (POC) approach
- Why?
 - Less optical alignment
 - Small sample requirement
 - Fast response time
- How?
 - Reduce the size of optical components
 - Portable and disposable microfluidic chip

Next Steps of Optofluidics?

- Optofluidics should integrate multiple cell analysis functions into one chip
 - A Fully Optical Microfluidic (FOV) platform
- Why?
 - Simplicity of optical components (non-invasive)
 - Fast cellular operation
 - Flexibility toward to different cell types and applications
- How?
 - Dual wavelength light source
 - Better photo detectors (e.g. EMCCD, multi-anode PMT)

Optofluidics for Single Cell Analysis

Why analyze single cells?
Cell heterogeneity

Optofluidics for Single Cell Analysis

Single Cell Optical Manipulation

- Gradient Force
 - Cell detection / sorting
 - Microarray cell trapping

(NATURE BIOTECHNOLOGY VOLUME 23 NUMBER 1, 83-87, 2005)

(Lab Chip, 2011, 11, 2432-2439)

Single Cell Optical Manipulation

(A)

PDMS

Glass

(Analytical Chemistry, Vol. 79, No. 24, 9321-9330, 2007)

Single Cell Optical Manipulation

Light induced electrical field

Pulsed laser induced bubble

Single Cell Optical Treatment

- Optical Transfection and injection
 - Transfection: DNA, RNA, Protein
 - Injection: gold nanoparticle

Single Cell Optical Treatment

High-throughput optical injection enabled by microfluidics

Single Cell Optical Treatment

- Steps of laser-induced cell lysis process
- Time-lapsed fluorescence images showing cell lysis dynamics in a microfluidic channel
- Optofluidic devices enabling cell lysis and electrophoresis separation of two fluorescent dyes inside cells.

Single Cell Detection

- Cell deformability detection
 - Use a optical stretcher with two laser beams from fiber
 - Normal cells v.s. cancer cell (more deformable)
 - Hematological disorder by measuring the deformability of RBC

Single Cell Detection

- Raman Tweezers
 - Cancer / normal cells
 - Oxygenation dynamics of single red blood cell

Bacteria Infection Diagnosis Method

• Current bacteria antibiotic susceptibility test (AST)

P**Bae**To/Alterte

1dalydayday

- Two problems:
 - 1. complicated procedures and bulky instruments
 - 2. prolonged process time

Microfluidics for bacteria AST

System integration:

EE(

- Less manipulation error
- Lower sample volume & process time
- Surface-Enhanced Raman Scattering (SERS)
 - Label-free and rapid detection

D=25nm W=5nm

Microfluidics for bacteria AST

Sample preparation + Metabolite detection

Microfluidic device for bacteria trapping

- Integrating a porous membrane in PDMS microfluidic device: enables bacteria filtration, buffer washing and culture
- Bacteria process timeless is than 5 minutes
- Low bacteria concentration requirement

(Chang et. al., in preparation) Bio-Optofluidic System Lab, NTU ³⁰

Automated microfluidic control system

185 mm X 133 mm

On-chip LC separation of FITC and R6G

(Wang et. al., under review)

On-chip LC separation and SERS Detection

 Two fluorescent molecule (FITC and R6G) separation and in-situ SERS detection

(Wang et. al., under review)

On-chip LC separation and SERS Detection

 Two bacteria metabolites (Adenine and Hypoxanthine) separation and in-situ SERS detection

34

A Fully Optical Microfluidic (FOM) platform

(Lab Chip, 2014, 14, 1230-1245)

(Lab Chip, 2011, 11, 1256-1261)

Conclusions

- Optofluidics can be applied for various applications
 - Optical component integration
 - Environmental applications: food and agriculture, water desalination, biofuel energy generation
 - Single cell manipulation, treatment and analysis
 - Medical devices for disease diagnosis

References

• Two TED video of two microfluidic related applications

Geraldine Hamilton: Body parts on a chip https://www.youtube.com/watch?v=CpkX mtJOH84

Ultra low-cost medical diagnostics in a tiny box | Paul Yager | TED x Rainier <u>https://www.youtube.com/watch?v=isT</u> IzLOfxtw

